

Final Report Stormwater Management Report

3400 Dufferin Street &8 Jane Osler Boulevard,City of Toronto

Prepared for Dufferin – 401 Properties Limited & Collecdev Inc. by IBI Group IBI Group Project #139570 August 9, 2022

Document Control Page

CLIENT:	Dufferin – 401 Properties Limited & Collecdev Inc.		
PROJECT NAME:	3400 Dufferin Street & 8 Jane Osler Boulevard, City of Toronto		
REPORT TITLE:	Stormwater Management Report		
IBI REFERENCE:	IBI Group Project #139570		
VERSION:	1		
DIGITAL MASTER:	139570 3400 Dufferin Street_City of Toronto - Internal Documents\6.0 Technical\6.04 Civil\03 Reports\Revision 1\SWM		
ORIGINATOR:	Shirley Beaudoin, CAD Technologist, Land Engineering		
REVIEWER:	Neil Short, Director, Sr. Practice Lead, Land Engineering		
AUTHORIZATION:	Jason Jenkins, P.Eng., P.E., Associate Manager, Land Engineering		
HISTORY:	Identification Date Description of Issued and/or Revision		
	SWM, August 09, 2022, 1st Submission (ZBA, SPA, & Plan of Subdivision)		

AUTHORIZED FOR ISSUE BY: IBI GROUP

Jason Jenkins, P.Eng., P.E. Associate Manager Land Engineering

Table of Contents

1	Introduc	Introduction1			
	1.1	Background	1		
	1.2	Existing Site Description	1		
	1.3	Site Proposal	2		
	1.4	Service Connections	2		
2	Terms o	f Reference and Methodology	3		
	2.1	Terms of Reference	3		
	2.2	Methodology: Stormwater Management	3		
3	Stormwa	ater Management	4		
	3.1	Pre-Development Conditions	4		
	3.2	Grading	4		
	3.3	Allowable Release Rate	5		
	3.4	Quantity Control	5		
	3.5	Quality Control	7		
	3.6	Water Balance	9		
	3.7	Municipal Storm Sewers	2		
	3.8	Storm Service Connection	2		
	3.9	Emergency Overflow13	3		
	3.10	Erosion and Sediment Control1	3		
4	Conclus	ions and Recommendations14	4		

List of Tables

Table 3.1	Allowable Release Rates	5
Table 3.2	Quantity Control Summary	6
Table 3.3	TSS Performance: Building A	7
Table 3.4	TSS Performance: Building B	7
Table 3.5	TSS Performance: Building C	7
Table 3.6	TSS Performance	8
Table 3.7	Water Balance Targets (Overall Subdivision)	9
Table 3.8	Initial Abstraction: Municipal ROW	9

Table 3.9	Water Balance Targets (Overall Subdivision, Adjusted)	
Table 3.10	Initial Abstraction: Block B	
Table 3.11	Initial Abstraction: Block D	11
Table 3.12	Initial Abstraction: Block E	11
Table 3.13	Storm Sewer Performance	
Table 3.14	Storm Service Performance	

List of Figures

FIG 1	Aerial Plan	. Following Report

List of Drawings

Draft Plan of Subdivision Drawing Set App	endix C
Site Plan Application Drawing Set App	endix C

Appendices

Appendix A Background InformationAppendix B Stormwater AnalysisAppendix C Engineering Plans

1 Introduction

1.1 Background

IBI Group Professional Services (Canada) Inc. (IBI Group) has been retained by Dufferin – 401 Properties Limited & Collecdev Inc. (the "Owner") to prepare a Stormwater Management Report (SWM Report) to support the Draft Plan of Subdivision, Zoning By-Law Amendment (ZBA), and Site Plan Application (SPA) processes for a proposed mixed-use development located at 3400 Dufferin Street & 8 Jane Osler Boulevard (the "Subject Site"), in the City of Toronto (the "City"). The purpose of this report is to provide a municipal servicing strategy for storm drainage and stormwater management. More specifically, the report will evaluate Stormwater Management (SWM) opportunities and constraints, including:

- Calculate allowable and proposed runoff rates for the development;
- Evaluate suitable methods for attenuation and treatment of stormwater runoff; and
- Develop on-site control measures and examine theoretical performance to satisfy the City's Wet Weather Flow Management Guidelines (WWFMG).

The following documents have been obtained from various sources:

- City of Toronto plan and profile drawings for Dufferin Street and Jane Osler Boulevard;
- City of Toronto Public Utilities Coordinating Committee (TPUCC) mapping;
- Grading and Servicing plans for 3450 Dufferin Street prepared by Schaeffer & Associates Ltd. (Schaeffer's), dated July 2021;
- Dufferin Street Avenue Study Infrastructure Master Plan prepared by Fabian Papa and Partners, dated November 2014;
- Topographic Survey prepared by KRCMAR Surveyors Ltd., dated June 2022;
- Functional Road Design prepared by BA Group, dated July 2022; and,
- Architectural plans and site statistics prepared by gh3 Architects.

1.2 Existing Site Description

Located at 3400 Dufferin Street & 8 Jane Osler Boulevard in the City of Toronto at postal code M6A 2V1, the 1.668 ha subject site is bounded by Dufferin Street to the east, several single family dwellings and Jane Osler Boulevard to the south, an existing commercial building to the west, and 3450 Dufferin Street to the north which is currently under construction. Please see **Figure 1** following the report for an aerial view of the site.

It should be noted that a separate development application has been submitted by others for 3450 Dufferin Street which includes (2) new municipal road dedications immediately north of the subject site; Street A (North) and Street B (North). This will be discussed in greater detail in subsequent sections. Sample site plan drawings for the adjacent development application can be found in **Appendix A** for reference.

The site currently hosts an existing commercial building and an asphalt parking surface. The site is relatively flat with ground surface elevations ranging from 190.6 m to 189.2 m and is self-contained with a small external drainage area along the southern limit.

The subject site is located within the Basement Flooding Study Area (BFA) #16 which was completed in 2012, and the Dufferin Street Avenue Study which was completed in 2014. Excerpt copies of each study can be found within the appendices of this report.

1.3 Site Proposal

The proposed development includes the division of the site into various blocks as follows:

- Block A: 1,825 m² municipal road to be dedicated to the City as a new 23 m public road (Street A) which shall align with Street A (North) at 3450 Dufferin Street and continue to Dufferin Street within Block F of the development.
- Block B: 4,046 m² mixed-use block consisting of a 29-storey building (Building A) with (2) levels of underground parking.
- Block C: 1,049 m² municipal road to be dedicated to the City as a new 18.5 m public road (Street B) which shall align with Street B (North) at 3450 Dufferin Street and connect to Street A within Block F of the development.
- Block D: 4,079 m² mixed-use block consisting of a 29-storey building (Building B) with (2) levels of underground parking.
- Block E: 1,811 m² mixed-use block consisting of a 10-storey building (Building C) with (2) levels of underground parking.
- Block F: 3,870 m² municipal road to be dedicated to the City as a new 23 m public road (Street A) which shall connect Street A (North) to Dufferin Street.

In summary, Blocks A, C, and F shall be dedicated to the City as new municipal rights-of-way (ROW), and Blocks B, D, and E shall be developed as mixed-use blocks. Sample architectural drawings and the functional road design can be found in **Appendix A** for reference.

1.4 Service Connections

While a development site can typically share a single storm service connection, individual sanitary and domestic services are required for each built form to satisfy City's servicing policy. Accordingly, each building shall be serviced independently.

Furthermore, the Ontario Building Code (OBC) requires two fire service connections separated by an isolation value for any building above 84 m in height. As Building A and Building B exceed this threshold, a secondary fire service will be required for each. The following represents the number of service connections for each development block:

- Block B (Building A): (1) storm, (1) sanitary, (2) fire, and (1) domestic service;
- Block D (Building B): (1) storm, (1) sanitary, (2) fire, and (1) domestic service; and,
- Block E (Building C): (1) storm, (1) sanitary, (1) fire, and (1) domestic service.

Site servicing requirements will be discussed in greater detail in subsequent sections.

2 Terms of Reference and Methodology

2.1 Terms of Reference

The terms of reference used for the scope of this report have been based on the City of Toronto Design Criteria for Sewers and Watermains, dated January 2021, the City of Toronto Wet Weather Flow Management Guidelines, dated November 2006, and the Dufferin Street Avenue Study Infrastructure Master Plan, dated November 2014.

2.2 Methodology: Stormwater Management

As the proposed development has a total site area less than 5.0 ha (Table 7, Section 2, WWFMG), the following SWM criteria shall apply:

Quantity Control

Per the WWFMG, the allowable release rate to the municipal storm sewer system from the development site during a 2- year design storm event must not exceed the peak runoff rate from the site under pre-development conditions during the same storm event, the existing capacity of the receiving storm sewer, and per the Dufferin Street Avenue Study the allowable release rate shall be limited to 75 L/s/ha, whichever is more restrictive.

A maximum runoff coefficient of 0.5 shall be used in calculating the pre-development peak runoff. An overland flow route (major system) shall be provided within the developed site to direct runoff in excess of the 100-year storm to an approved overland flow outlet.

Quality Control

Long-term average removal of 80% of the total suspended solids (TSS) on an annual loading basis must be achieved. TSS removal efficiency is to be based on 100% of the runoff leaving the site from all storm events that occurs in an average year.

Water Balance

The criteria provided in the City's WWFMG outlines that controls should be in place, such that the runoff resulting from a 5 mm rainfall event must be retained on-site for rainwater re-use, infiltration, and/or evapotranspiration.

3 Stormwater Management

3.1 Pre-Development Conditions

Local storm infrastructure consists of:

- A 600 mm storm sewer within Dufferin Street, which conveys flows in a southerly direction; and,
- A 600 mm storm sewer within Jane Osler Boulevard which conveys flows in a westerly direction.

As previously mentioned, (2) new municipal roads are proposed immediately north of the subject site as part of a separate development application, which will include various storm infrastructure. As the proposed storm infrastructure within the adjacent development has not been sized to accommodate flows from the subject site, it shall not be considered as a suitable outlet for the subject site.

The site currently hosts an existing building and a surface asphalt parking lot resulting in a pre-development runoff coefficient in excess of 0.50, however as the WWFMG limits the allowable release rate using a pre-development runoff coefficient of 0.50, this shall govern.

3.2 Grading

Under pre-development conditions, the rear yards of the adjacent residential lots fronting Jane Osler Boulevard drain to the subject site. This external area will be taken into consideration as part of the overall stormwater management strategy.

Emergency overland flow route in excess of a 100-year storm is directed to both Jane Osler Boulevard and Dufferin Street under pre-development conditions. Existing drainage patterns shall be maintained wherever feasible. Please refer to drainage area plans **STM-1** and **STM-2**.

3.3 Allowable Release Rate

As previously mentioned, per the WWFMG the allowable release rate for each development block and the overall subdivision is the 2-year pre-development flow, calculated using the City's IDF data and a maximum runoff coefficient of 0.50 and per the Dufferin Street Avenue Study release rates in the area must be further controlled to 75 L/s/ha. This is summarized in the following table.

CATCHMENT	AREA (ha)	PER WWFMG (L/s)	PER AVENUE STUDY (L/s)
Municipal ROW	0.6641	81.3	49.8
Block B (Building A)	0.4046	49.6	30.3
Block D (Building B)	0.4002	49.0	30.0
Block E (Building C)	0.1652	20.2	12.4
Total Subdivision (Less Dufferin Widening)	1.634	200.2	122.6

Table 3.1Allowable Release Rates

As shown above, the post-development release rate for the subdivision shall be limited per the Dufferin Street Avenue Study to 122.6 L/s, as this is the more conservative rate. Please see the associated pre-development drainage area plan **STM-1** as part of the subdivision package.

3.4 Quantity Control

As previously mentioned, the post-development release rate for the subject site shall be limited to 75 L/s/ha per the Dufferin Street Avenue Study, which has been calculated to be **122.6 L/s.** Each block will require on-site underground storage and an orifice control. The 100-year peak orifice discharge for each block has been calculated using the following orifice discharge equation:

$$Q_{\text{Orifice}} = K \times A \times \sqrt{2 \times g \times h}$$

Block B (Building A)

To attenuate flows, a stormwater management tank with a minimum storage area of 95.0 m^2 and a 95 mm orifice plate shall be installed within the P1 level. Limiting the 100-year storage depth at 1.80 m the attenuated orifice discharge is calculated as follows:

$$Q_{Block B} = (0.63) \times \frac{\pi \times (0.095)^2}{4} \times \sqrt{2 \times 9.81 \times (1.80 - 0.095/2)} \times \frac{1000 L}{1 m^3} = 26.2 L/s$$

Block D (Building B)

To attenuate flows, a stormwater management tank with a minimum storage area of 87.0 m² and a 95 mm orifice plate shall be installed within the P1 level. Limiting the 100-year storage depth at 1.44 m the attenuated orifice discharge is calculated as follows:

$$Q_{Block D} = (0.63) \times \frac{\pi \times (0.095)^2}{4} \times \sqrt{2 \times 9.81 \times (1.44 - 0.095/2)} \times \frac{1000 L}{1 m^3} = 23.3 L/s$$

Block E (Building C)

To attenuate flows, a stormwater management tank with a minimum storage area of 53.0 m^2 and a 75 mm orifice plate shall be installed within the P1 level. Limiting the 100-year storage depth at 0.88 m the attenuated orifice discharge is calculated as follows:

$$Q_{\text{Block E}} = (0.63) \times \frac{\pi \times (0.075)^2}{4} \times \sqrt{2 \times 9.81 \times (0.88 \cdot 0.075/2)} \times \frac{1000 \text{ L}}{1 \text{ m}^3} = 11.3 \text{ L/s}$$

Overall Subdivision

A 165 m length of 1,200 mm storm sewer and 200 mm orifice tube shall be installed within the new municipal roadways to attenuate flows for the subdivision, including flows from the external drainage area to the south. Limiting the 100-year storage depth at 1.21 m the attenuated orifice discharge is calculated as follows:

$$Q_{subdivision} = (0.82) \times \frac{\pi \times (0.200)^2}{4} \times \sqrt{2 \times 9.81 \times (1.21 - 0.200/2)} \times \frac{1000 \text{ L}}{1 \text{ m}^3} = 120.1 \text{ L/s}$$

The following is a summary of the stormwater management parameters pertaining to quantity control:

	Quality 001		1			
CATCHMENT	STORAGE REQ'D (m ³)	STORAGE PROVIDED (m ³)	ALLOWABLE RELEASE RATE (L/s)	ORIFICE RELEASE RATE (L/s)	UN- CONTROLLED FLOW (L/s)	TOTAL RELEASE RATE (L/s)
Block B	117.4	134.9	30.3	26.2	0.0	26.2
Block D	112.6	168.4	30.0	23.3	0.0	23.3
Block E	46.8	105.4	12.4	11.3	0.0	11.3
Subdivision	192.1	197.9	122.6	120.1	0.0	120.1

Table 3.2	Quantity Contro	I Summary
-----------	-----------------	-----------

As shown above, the total peak flow from the subdivision is calculated to be 120.1 L/s which is less than the allowable release rate of 122.6 L/s. By providing on-site storage and an orifice control for each development block and the municipal ROW, the City's objectives for quantity control have been met. Please see detailed calculations which can be found in **Appendix B**.

It should be noted that regular inspection and maintenance of any storage element and orifice control should be conducted on a regular basis to ensure that the system is functioning as designed.

3.5 Quality Control

As previously mentioned, 80% TSS removal is required in order to meet the City's WWFMG's. The following discusses the water quality strategies for each block and the new municipal road.

Private Development Blocks

Based on the proposed site conditions and surface treatment, the following tables summarize each development block's inferred TSS removal rate:

SURFACE TYPE	AREA (m ²)	EFFECTIVE TSS REMOVAL	OVERALL TSS REMOVAL
Conv. Roof	1,387	80	27.4
Intensive Green Roof	1,088	80	21.5
Landscape	0	80	0.0
Landscape over P1	225	80	4.4
Permeable Pavers	0	80	0.0
Impervious	1,346	0	0.0
TOTAL	4,046		53.4

Table 3.3 TSS Performance: Building A

Table 3.4TSS Performance: Building B

SURFACE TYPE	AREA (m ²)	EFFECTIVE TSS REMOVAL	OVERALL TSS REMOVAL
Conv. Roof	1,399	80	27.4
Intensive Green Roof	1,026	80	20.1
Landscape	0	80	0.0
Landscape over P1	571	80	11.4
Permeable Pavers	0	80	0.0
Impervious	1,006	0	0.0
TOTAL	4,002		59.9

Table 3.5 TSS Performance: Building C

SURFACE TYPE	AREA (m²)	EFFECTIVE TSS REMOVAL	OVERALL TSS REMOVAL
Conv. Roof	672	80	29.7
Intensive Green Roof	362	80	16.0
Landscape	0	80	0.0
Landscape over P1	183	80	8.9
Permeable Pavers	0	80	0.0
Impervious	435	0	0.0
TOTAL	1,652		58.9

Left untreated, each block will not achieve the City's requirement for 80% TSS removal. Therefore, it is proposed that a Stormfilter© system complete with media cartridges be installed for each block. All "dirty" areas within the drive aisle shall first be directed to the Contech chamber, whereas all other areas can be considered clean and routed directly to the stormwater management tank. Please refer to the Contech Sizing Report which can be found in **Appendix B**.

The Stormfilter© system is accepted as a standalone off-line treatment unit and meets the City of Toronto's criteria for 80% TSS per the WWMFG's. Any proposed substitutions will require approval from both the engineer of record and the City of Toronto.

It is recommended that the Stormfilter© system be inspected on a regular basis to ensure proper operation. Per Contech's recommendations, inspection and maintenance should be carried out at a minimal interval of 12 months with inspections prior to each winter season with filter replacements as required.

Municipal Right-of-Way

Based on the proposed site conditions and surface treatment, the following table summarizes the municipal ROW's inferred TSS removal rate:

SURFACE TYPE	AREA (m²)	EFFECTIVE TSS REMOVAL	OVERALL TSS REMOVAL
Landscape	1,771	80	21.3
Impervious	4,870	0	0.0
TOTAL	6,641		21.3

Table 3.6TSS Performance

As shown above, the new municipal roadway will not satisfy the City's criteria for quality control due to the high percentage of impervious surface. It is therefore proposed that a Contech CDS® 5-C oil-grit separator (OGS) (or approved equal) be installed downstream of the orifice control. By installing a City approved quality control unit, the City's requirements for quality control have been satisfied. Please see **Appendix B** for the detailed design sheet and OGS specification.

It should be noted that regular inspection and maintenance of any water quality control device should be conducted on a regular basis to ensure that the system is functioning as designed.

By adding City-approved stormwater quality treatment units for each development block and the municipal ROW, the City requirements for quality control (i.e. minimum 80% TSS removal) have been satisfied.

3.6 Water Balance

As required by the City's TGS Tier 1, a rainfall depth of 5 mm must be retained over the entire area of development. In order to achieve the required volume, a combination of initial abstraction and water re-use will be incorporated. The following discusses the water balance targets for the overall subdivision and each development block independently.

Overall Subdivision

The water balance targets for the subdivision are summarized as follows:

Tuble off Mater Balance Targete (e			
CATCHMENT	AREA (m²)	DEPTH (mm)	TOTAL REQUIRED VOLUME (m ³)
Municipal ROW	6,641	5.0	33.2
Block B (Building A)	4,046	5.0	20.2
Block D (Building B)	4,002	5.0	20.0
Block E (Building C)	1,652	5.0	8.3
Subdivision	16,341		81.7

Table 3.7 Water Balance Targets (Overall Subdivision)

New Municipal Roadways

As Blocks A, C, and F are to be dedicated to the City as new municipal roadways, a rainfall depth of 5 mm must be retained over the total area to be dedicated.

Based on initial abstraction values for each surface type, the total abstraction is calculated as follows:

14510 010		ipai ite ii		
	AREA	AREA (m ²)	INITIAL ABSTRACTION	TOTAL (m³)
	Landscape	1,771	5	8.9
	Impervious	4,870	1	4.9
	TOTAL	6,641		13.7

Table 3.8 Initial Abstraction: Municipal ROW

As shown above, the new municipal roadways will be short of meeting the required water balance volume by 19.5 m^3 ($33.2 \text{ m}^3 - 13.7 \text{ m}^3$) and will only achieve an aggregate depth of 2.1 mm. It is therefore proposed that each private development block (Blocks B, D, and E) be required to compensate for this shortfall on a pro-rated basis.

Overall Subdivision (Adjusted)

The following table summarizes the adjusted water balance targets for each development block.

CATCHMENT	AREA (m²)	DEPTH (mm)	TOTAL REQUIRED VOLUME (m ³)
Municipal ROW	6,641	2.1	13.7
Block B (Building A)	4,046	7.0	28.4
Block D (Building B)	4,002	7.0	28.0
Block E (Building C)	1,652	7.0	11.6
Subdivision	16,341		68.0

Table 3.9	Water Balance Targets (Overall Subdivision, Adjusted)

As shown above, each private development block shall retain an additional 2.0 mm to compensate for the new municipal roadway. Please see **Appendix B** for the detailed design calculations.

Block B (Building A)

With an area of 4,046 m² and an adjusted water balance target of 7.0 mm, the corresponding water balance volume to be retained on-site is calculated to be **28.4 m³**. Based on initial abstraction values for each surface type, the total abstraction is calculated as follows:

AREA	AREA (m ²)	INITIAL ABSTRACTION	TOTAL (m³)
Conv. Roof	1,387	1	1.4
Intensive Green Roof	1,088	7	7.6
Landscape	0	5	0.0
Landscape over P1	225	5	1.1
Permeable Pavers	0	5	0.0
Impervious	1,346	1	1.3
TOTAL	4,046		11.5

Table 3.10 Initial Abstraction: Block B

As shown above, 11.5 m^3 is retained on-site through initial abstraction. The balance of 16.9 m^3 will be retained through water re-use purposes such as landscape irrigation and / or toilet flushing. Confirmation from the irrigation and mechanical consultants shall be provided in a future submission. An adequate sump within the stormwater management tank will be provided within the P1 level to retain the total water re-use volume. Please see **Appendix B** for the detailed design sheet and detailed drawing **SS-01**.

Block D (Building B)

With an area of 4,002 m² and an adjusted water balance target of 7.0 mm, the corresponding water balance volume to be retained on-site is calculated to be **28.0 m³**. Based on initial abstraction values for each surface type, the total abstraction is calculated as follows:

AREA	AREA (m²)	INITIAL ABSTRACTION	TOTAL (m³)
Conv. Roof	1,399	1	1.4
Intensive Green Roof	1,026	7	7.2
Landscape	0	5	0.0
Landscape over P1	571	5	2.9
Permeable Pavers	0	5	0.0
Impervious	1,006	1	1.0
TOTAL	4,002		12.4

Table 3.11Initial Abstraction: Block D

As shown above, 12.4 m³ is retained on-site through initial abstraction. The balance of 15.6 m³ will be retained through water re-use purposes such as landscape irrigation and / or toilet flushing. Confirmation from the irrigation and mechanical consultants shall be provided in a future submission. An adequate sump within the stormwater management tank will be provided within the P1 level to retain the total water re-use volume. Please see **Appendix B** for the detailed design sheet and detailed drawing **SS-01**.

Block E (Building C)

With an area of 1,652 m² and an adjusted water balance target of 7.0 mm, the corresponding water balance volume to be retained on-site is calculated to be **11.6 m³**. Based on initial abstraction values for each surface type, the total abstraction is calculated as follows:

AREA	AREA (m²)	INITIAL ABSTRACTION	TOTAL (m³)
Conv. Roof	672	1	0.7
Intensive Green Roof	362	7	2.5
Landscape	0	5	0.0
Landscape over P1	183	5	0.9
Permeable Pavers	0	5	0.0
Impervious	435	1	0.4
TOTAL	1,652		4.6

Table 3.12 Initial Abstraction: Block E

As shown above, 4.6 m^3 is retained on-site through initial abstraction. The balance of 7.0 m^3 will be retained through water re-use purposes such as landscape irrigation and / or toilet flushing. Confirmation from the irrigation and mechanical consultants shall be provided in a future submission. An adequate sump within the stormwater management tank will be provided within the P1 level to retain the total water re-use volume. Please see **Appendix B** for the detailed design sheet and detailed drawing **SS-01**.

3.7 Municipal Storm Sewers

As previously mentioned, it is proposed that a new 1,200 mm concrete storm sewer at a 0.20% slope be installed within Street A to provide storage specifically for the municipal ROW for stormwater attenuation. The storage element shall be connected to an oil-grit separator with a 1.0 m length of 200 mm PVC storm sewer (orifice control) and a 2.8 m length of 450 mm storm sewer at a 0.50% slope. The oil-grit separator shall be connected to the existing 600 mm storm sewer within Dufferin Street with a 17.3 m length of 450 mm PVC storm sewer installed at a 0.50% slope.

The following table illustrates the peak flow and corresponding capacity of the proposed storm sewer:

Table 5.15	Storm Sewer	Periormance				
FROM	то	STORM SEWER SIZE (mm)	SEWER SLOPE	PEAK FLOW (L/s)		PERCENT OF FULL FLOW
MH7 (OGS)	MH8	450	0.50%	120.1	201.60	60%

 Table 3.13
 Storm Sewer Performance

As shown above, the proposed storm sewer can easily convey its respective storm flow while operating at 60% of full flow capacity. Please refer to the detailed design calculations which can be found in **Appendix B**, and the design drawings **SS-01** and **SS-02**.

3.8 Storm Service Connection

It is proposed that each block be connected to the proposed municipal storm sewer with a PVC storm service. The following table illustrates the peak flow and corresponding capacity of each service:

Table 3.14	3101111 36	rvice Periori	liance				
BLOCK	FROM	то	STORM SERVICE SIZE (mm)	SERVICE SLOPE	PEAK FLOW (L/s)	CAPACITY (L/s)	PERCENT OF FULL FLOW
Block B (Building A)	Ctrl MH1	1,200 mm (Street A)	200	2.0 %	26.2	46.4	56%
Block D (Building B)	Ctrl MH2	MH6 (Street A)	200	2.0%	23.3	46.4	50%
Block E (Building C)	Ctrl MH3	1,200 mm (Street A)	200	2.0%	11.3	46.4	24%

Table 3.14 Storm Service Performance

As shown above, the proposed storm service connections can easily convey the controlled discharge from each block while operating at 56% (or less) of full flow capacity. Please refer to the detailed design calculations which can be found in **Appendix B**, and the design drawings **SS-01** and **SS-02**.

3.9 Emergency Overflow

It is recommended that rooftop scuppers be installed to ensure emergency overflow from roof areas should rooftop drains become plugged.

All areas at grade level have been designed with positive drainage (away from the building).

Each stormwater management tank shall be designed with an emergency outlet to allow storm flows to spill to the adjacent municipal right-of-way in an emergency situation.

Maximum ponding within the development site shall not exceed City requirements of 0.30 m.

3.10 Erosion and Sediment Control

It is recommended that a sediment control fence per T-219.130-1 be installed along the perimeter of the site as required during demolition activities. All existing and proposed catch basins within close proximity of the subject site shall be protected with a geotextile fabric. A mud mat shall be installed as required to minimize distribution of mud into the public realm.

4 Conclusions and Recommendations

Quantity Control

By incorporating stormwater storage and an orifice control, each block shall be attenuated on-site and released to the municipal storm sewer within the new municipal roadways at an appropriate discharge rate. By incorporating stormwater storage (oversize pipe) and an orifice control within the new municipal roadway, the new municipal roadway will meet the City's target for quantity control.

Quality Control

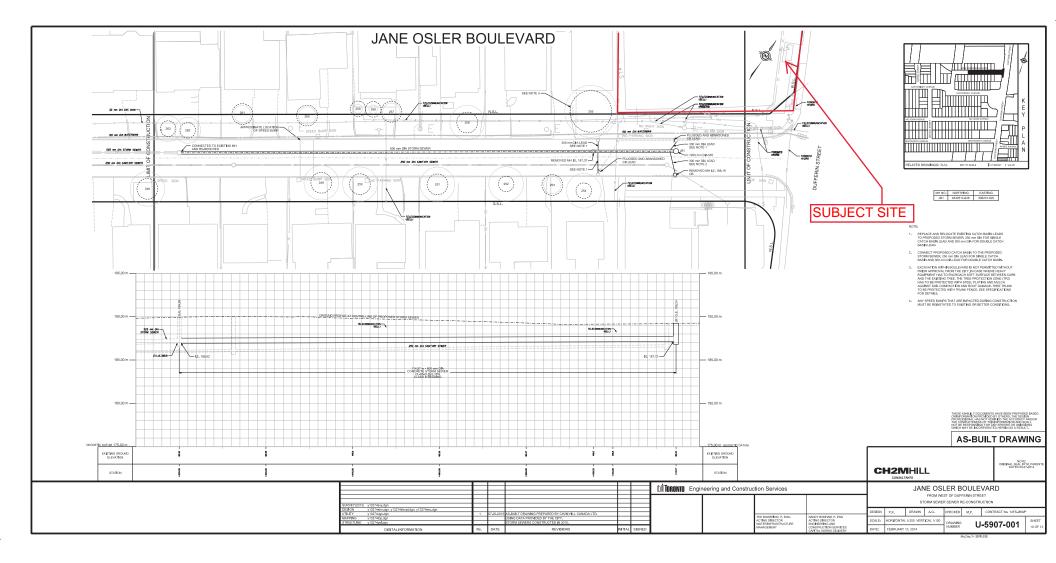
By adding a water quality unit within each private development block and an oil-grit separator within the new municipal roadway, the overall subdivision will meet the City's target for quality control.

Water Balance

While the new municipal roadway will fall short of meeting the City's water balance target, Development Blocks B, D, and E will overcompensate for this shortfall. Through initial abstraction and graywater re-use (irrigation and toilet flushing), the overall subdivision will meet the City's target for water balance.

Summary

In summary, it can be concluded that the Zoning By-Law Amendment, Draft Plan of Subdivision application, and Site Plan application can be supported from both a storm servicing and a stormwater management perspective.



DUFFERIN - 401 PROPERTIES LIMITED & COLLECDEV INC.	PROJECT NAME 3400 DUFFERII 8 JANE OSLER		IBI GROUP Unit 300 – 8133 Wardee Markham ON L6G 1B3 tel 905 763 2322 fax 90 ibigroup.com	Canada	
	SCALE: NTS	DATE: 2022-06-20	FIGURE NAME AERIAL PLAN	FIGURE NO.	REVISION
	PROJECT ENG:	DRAWN BY: SB		FIG.1	1
	CHECKED BY: JMJ	APPROVED BY:		FIG. I	1
	PROJECT NO: 139570				

SCA 1 in

Appendix A Background Information

Plan and Profile Drawings (City of Toronto)
TPUCC Mapping (City of Toronto)
Excerpt Dufferin Street Avenue Study (Fabian Papa & Partners)
Topographic Survey (KRCMR)
3450 Dufferin Site Grading and Servicing Plans (Schaeffer's)
Sample Architectural Drawings (gh3)
Functional Road Design (BA Group)
Subsurface Utility Engineering Study (Urban X)

	FER	44'.45	3
+50	IN		2
	STR		
	EET	45'-2 1 254'-	I
		27 - CON	REG'D
		х 33' - 91/4 с вти	PLA 29
	+	N'-3	201 CB BLVD.
	•	JANE	02771
		606-41	
		- Cece 1	-9-P
	2		
		10 [°]	3336
	+		
	2	6'- 42/4' 24' CON	
		c, 17M,	
	10	<u>@ 038</u> 9	
			1
		1	2
		809.77 1	5.4
		-O 809	1
			REG
		310'	13
		- z=* ((PLAN
		016_271	_
		1. @ 0.3	867 SUB
		10.7%	
	1		T S
			ITE
	¥.		
		610.61	
		-O-610 8	
T		17	
	24		
		/	
	el ²	/	BRIDGELAND
		INC. BTH	
		A 2123	-
		1	BO 7!
		(# e.	RE

Dufferin Street Avenue Study

Infrastructure Master Plan

FINAL REPORT November 2014

216 Chrislea Road, Suite 501 | Woodbridge, Ontario | L4L 8S5 Tel: 905-264-2420 | www.fabianpapa.com

Contents

Executive Summary	i
Contents	iv
Introduction	1
Purpose	1
Study Area	1
Class EA Master Plan Process	2
Problem/Opportunity Statement	2
Description of the Project Area	4
Demographics & Local Context	4
Land Use	4
Natural Environment	5
Socio-Economic Environment	8
Cultural Heritage	8
Existing Infrastructure	9
Future Conditions	13
Evaluation of Alternatives	15
Alternatives	15
Evaluation Methodology	16
Water Distribution	17
Design Criteria	17
Alternatives	19
Assessment & Evaluation of Alternatives	19
Preferred Solution	20
Implementation Considerations	20
Sanitary Sewerage	21
Design Criteria	21
Alternatives	22
Assessment & Evaluation of Alternatives	23
Preferred Solution	24
Implementation Considerations	32
Storm Drainage & Stormwater Management (SWM)	35
Stormwater Management Objectives	35
Alternatives	37
Assessment & Evaluation of Alternatives	38

	Preferred Solution	38
	Implementation Considerations	40
P	ublic & Stakeholder Consultation	41
	Local Advisory Committee (LAC)	41
	Public Open House # 1	41
	Public Open House # 2	42
	Public Open House # 3	43

Appendix A	Water Distribution System Analysis
Appendix B	Sanitary Sewer System Analysis
Appendix C	Stormwater Management Supporting Documentation
Appendix D	Public Consultation

Storm Drainage & Stormwater Management (SWM)

The City's Wet Weather Flow Management Guidelines (WWFMG) provide a comprehensive methodology for guiding the design of stormwater management measures for developments and are expected to result in an overall reduction in stormwater volumes and peak flows to levels which are at or below the capacity of the receiving drainage system. For instance, the WWFMG considers the detention of drainage for storms up to the 100-year return period frequency with a stringently controlled discharge rate. It is expected that many of the properties in the study area currently do not deliver this level of performance and, therefore, upon re-development, the adoption of such practices are expected to reduce the hydraulic loading on the receiving drainage systems. In addition to runoff quantity control, the WWFMG contains provisions for water balance – which reduces the amount of runoff exiting the site – and water quality control.

As noted earlier, the recommendations of the Basement Flooding Study Area Class EAs provide significant guidance on system improvements required to minimize the probability and frequency of flooding in the drainage sheds relevant to this study area. As at the time of preparation, the scheduled infrastructure upgrades in the vicinity of the study area resulting from the Basement Flooding Study Area work include improvements on Jane Osler Boulevard in 2014²³. The purpose of this study is not to address current basement flooding issues, but rather to identify improvements needed to service growth in the study area and without exacerbating current conditions.

Given the configuration of the study area and the nature of Dufferin Street and other existing roadways, there is generally little opportunity to implement centralized measures to address stormwater management objectives. On the other hand, the re-development of individual sites will necessitate observance of the WWFMG, thereby resulting in the improved rainfall-runoff characteristics of, and potential reductions in overland flow within, the overall study area relative to current conditions.

Additional information is provided in Appendix C.

STORMWATER MANAGEMENT OBJECTIVES

All existing properties and anticipated development blocks in the study area are expected to be less than 5.0 ha in size, qualifying as "small new developments" pursuant to the WWFMG document. The following are the applicable objectives and requirements for such developments:

Water Balance

Developments are required to retain all runoff from a 5 mm rainfall event through infiltration, evapotranspiration and rainwater reuse. Despite this, it may be worthwhile considering a higher target for developments in this study area given the known historic flooding concerns associated with heavy rainfalls. A review of the available geotechnical information suggests that the underlying soils in the study area, while expected to capable of modest amounts of infiltration, are not expected to be suitable for more aggressive targets in this regard (see Appendix C). Accordingly, the target 5 mm volume noted above is to be maintained for developments in the study area. Of course, higher captured runoff volumes (rainfall depths) should be welcomed and encouraged, offering the simultaneous benefit of assisting to achieve water quality objectives.

Measures which can be considered to achieve water balance objectives include (but are not necessarily limited to):

- Green²⁴ or Blue²⁵ Roofs
- Infiltration Chambers/Galleries

²⁵ Blue roofs are non-vegetated source controls that detain stormwater, preferably with light coloured roofing material.

²³ K. Crowther, personal communication, 05 September 2013

²⁴ Relevant Resources: Toronto Green Roof By-Law; Toronto Green Roof Biodiverse Guidelines; Toronto Green Roof Construction Standards; Toronto Green Standard. See www.toronto.ca/greenroofs.

- 💉 🛛 Permeable Pavement
- Bioretention
- 💉 Rainwater Harvesting

It is important to note that the appropriateness of each of these measures, used alone or in some combination, is dependent upon a variety of factors including development size, actual soil characteristics, capital cost and maintenance considerations as well as intensity of demand for reuse in the case of rainwater harvesting. It is expected that the larger sites will have opportunities to implement several of these measures, while the smaller sites will be quite limited. As with current protocols for development in the City, it will be the development proponent's responsibility to demonstrate that the water balance objective is being achieved.

Water Quality

Developments are required to achieve a long-term average total suspended solids (TSS) removal from runoff of 80% on an annual loading basis, with the overall site removal efficiency including runoff retention and other on-site controls (i.e., treatment train approach). An example of a linkage between measures which provide the dual benefit of water balance and water quality is captured in the following passage:

Bioretention provides effective removal for many pollutants as a result of sedimentation, filtering, soil adsorption, microbial processes and plant uptake. It is also important to note that there is a relationship between the water balance and water quality functions. If a bioretention cell infiltrates and evaporates 100% of the runoff from a site, then there is essentially no pollution leaving the site in surface runoff.²⁶

Similar to the case for water balance, smaller sites are anticipated to be somewhat more challenged at meeting the water quality criterion and limited in the options available to be practically deployed. Historically, oil-grit separators have been used in such situations, however, the performance of most such technologies are deemed by Toronto to achieve at most 50% TSS removal and such devices must be accompanied by other measures in a treatment train to achieve the desired 80% TSS removal target. Media filtration devices with small footprints and capable of controlling finer particles (pollutants), comparable in size to traditional oil-grit separators, are available and which are capable of achieving the water quality target have been deployed on development projects elsewhere in the City, as an alternative. It is noted that operational and cost considerations may favour low impact development (LID) technologies over oil-grit separators.

Flood Flow Management

As noted earlier, the primary cause of historic flooding complaints has been the overwhelming of the capacity of the existing storm and sanitary sewage conveyance systems in response to heavy rainfalls. Although it is not the mandate of this study to resolve the existing causes of flooding as these are being handled under the City's Basement Flooding Protection Program; however, measures to decrease flows from the re-development sites will be required through the WWFMG, and are expected to relieve some of the stress of the receiving drainage system.

Discharge Criteria to Municipal Infrastructure

The allowable release rate to the municipal storm sewer system is governed by the lesser of the peak pre-development runoff rate or the available capacity of the receiving sewer. To estimate the pre-development peak runoff rate, a maximum runoff coefficient of 0.5 may be used, irrespective of the actual pre-development imperviousness of the site.

²⁶ "Low Impact Development Stormwater Management Planning and Design Guide", CVC/TRCA, 2010, Page 4-71.

ALTERNATIVES

The following is a brief description of the Master Plan alternatives considered in the context of storm drainage:

Alternative 1: Do Nothing

This alternative considers no changes to the existing system.

Alternative 2: Expand and/or Upgrade Existing Infrastructure

This alternative considers the implementation of infrastructure to extend the existing storm drainage system such as the case of new roadways to be implemented. The City's current Wet Weather Flow Management Policy requires that flows be controlled to within the limits of the existing system's capacity, subject to additional considerations, and therefore the option of upgrading existing infrastructure (i.e., increasing conveyance) is not applicable in this context.

Alternative 3: Implement On-Site Best Practices

In the context of storm drainage, this alternative considers the implementation of stormwater management measures both on individual development sites as well as within potential roadways. Stormwater management measures would have the effect of reducing and/or controlling runoff volumes exiting the site. They also offer water quality benefits and may also address water balance objectives, depending on site suitability. The City has adopted a Wet Weather Flow Management Guideline (WWFMG) document that has detailed information to guide design practices in this regard.

Alternative 4: Limit Community Growth

This alternative is deemed to not be applicable in this context and is accordingly not considered further for evaluation, but is presented here for the sake of completeness and consistency with the remainder of this document. The rationale underlying this position is based on the fact that this option does not decrease storm runoff. Moreover, the existing hydrology within the study area is characterized by hard surfaces such that any re-development of the lands would not materially exacerbate this condition given that the WWFMG would continue to be applied as per current City policy.

ASSESSMENT & EVALUATION OF ALTERNATIVES

Table 7 Assessment & Evaluation of Alternatives – Storm Drainage & Stormwater Management (SWM)

Criteria	Sub-Criteria	Alternative 1: Do Nothing	Alternative 2: Expand/Upgrade Ex. Infrastructure	Alternative 3: Implement On-Site Best Practices	Alternative 4: Limit Growth
	Functionality	This alternative is not in compliance with the City's existing policies and guidelines. This alternative does not consider extension of services into new roads.	New storm sewers constructed in new roads have minimal impacts. Impacts would include marginally increased maintenance obligations and life-cycle costs for the City, offset by increased tax and user base offered by development.	No negative environmental impacts. Reduction in runoff and quality controls will improve environmental health of watershed and reduce hydraulic loading to receiving drainage system.	Not applicable. This option does not decrease runoff. Existing hydrology of study are is predominantly impervious and any new development will be subject to application of the City's Wet Weather Flow Management Guidelines.
	Constructability				
Technical Merit	Maintenance Requirements				
	Life-Cycle Costs				
Natural Environment	Impact on the Natural Environment		Also, construction activities may impact the		
Socio-Economic Environment	Cultural Heritage Impact		local environment (e.g., noise, vibration), although these are not expected to be significant in relation to the overall construction activity. Mitigation measures to be implemented.		
	Construction Impact				
	Residential and Business Impact				
Preferred Solution Expand existing system into any new roads. Guided application of wet weather flow management guidelines for all new (re-)developments. Encourage the "greening" of all public and private spaces.					

PREFERRED SOLUTION

The preferred solution consists of the following elements:

Expand Existing System into New Roads

Where new public roads are to be developed, the expansion of the existing storm sewer system into these roads for purposes of collecting and conveying drainage from new development sites as well as runoff originating on the roads themselves is a sensible standard practice. Runoff from new sewer systems will need to be limited in accordance with the City's Wet Weather Flow Management Guidelines discharge criteria (e.g., the lesser of: flow rate calculated with a runoff coefficient of 0.5; existing discharge rate; or the *pro rata* share of receiving sewer system capacity.

Guided Application of the City's Wet Weather Flow Management Guidelines (WWFMG)

In general, the City's WWFMG are to be applied for any developments in the study area with one modification relating to the discharge criteria to the local municipal infrastructure where release rates from each site are to be controlled to 75 L/s/ha. It is important to note that this applies only to areas which currently drain to the storm drainage system within the study area, and not to areas that drain to systems outside thereof²⁷.

²⁷ As a specific example, the storm drainage from Yorkdale Shopping Centre is currently directed easterly, away from the study area and, accordingly, any development activity or similar situations which cause changes in the way drainage is handled on this site must consider the context of the system currently accepting such drainage. Of course, this does not preclude the opportunity for specific

It is noted that this release rate (i.e., 75 L/s/ha) is lower than what would be calculated through strict application of the WWFMG in consideration of the known flooding concerns in the area and their direct relationship to stormwater runoff. Additional discussion on the formulation of this criterion is provided in Appendix C.

For greater clarity, the runoff resulting from the 100-year return period design storm is to be contained on site and released at or below the control rate established using the above criteria. This is expected to greatly reduce the amount of water entering the municipal sewers and road surfaces for most rainfalls.

"Greening"

The application of the WWFMG implies the implementation of green measures to control runoff from sites. Nevertheless, additional "greening" of private sites as well as on public roadways wherever practical is generally expected to lead to additional environmental benefits and represents good practice.

Project Schedules

The extension of the storm drainage system into new roadways is a **Schedule A** activity. That is, these projects are approved and may proceed. The other elements of the preferred solution are either private-side controls or general "greening" measures, neither of which require fulfilment of the Class EA process in this context.

Mitigation Measures

Of the few impacts associated with the extension of the storm drainage system into new roadways, they are all relatively minor and straightforward to deal with using standard, customary mitigation practices.

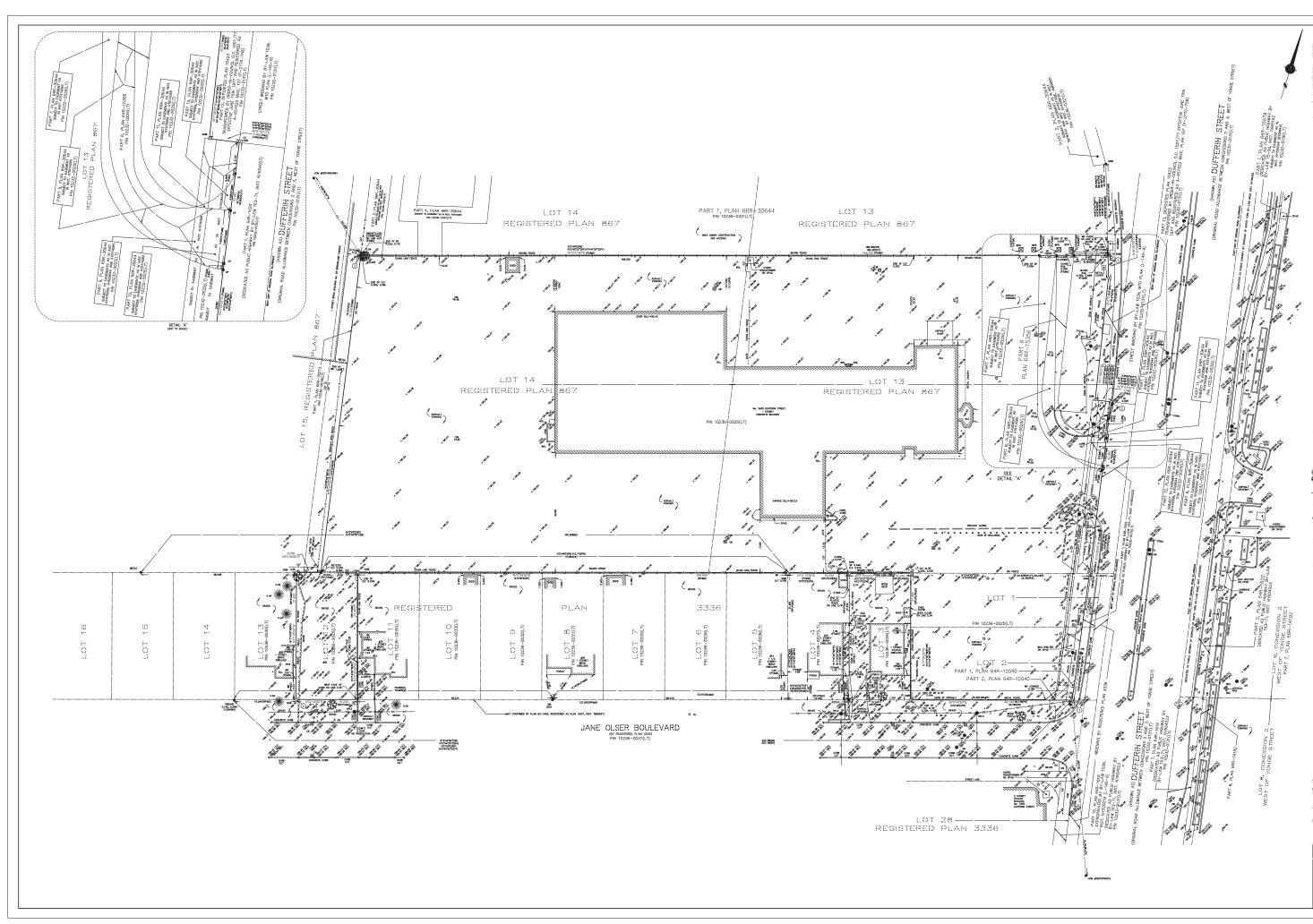
Environmental Impacts

Sedimentation and Dust Control is required for all construction activities in the City of Toronto. The implementation of standard mitigation practices (e.g., silt fences, mud mats, etc.) are expected to provide adequate controls in this regard, and it is expected that this construction will occur concurrently with other construction activities in the roadway, thereby minimizing the duration during which these impacts may be felt.

Social Impacts

- Traffic, Noise and Vibration result from almost all construction activities of this nature. Similar to the above, standard mitigation practices are expected to provide adequate controls in this regard, and construction is expected to occur concurrently with other construction activities in the roadway, thereby minimizing the duration during which these impacts may be felt.
- Safety During Construction for both workers and the general public is of obvious importance. All construction practices will be required to conform to both the City's requirements as well as the Province's legislation in this regard.

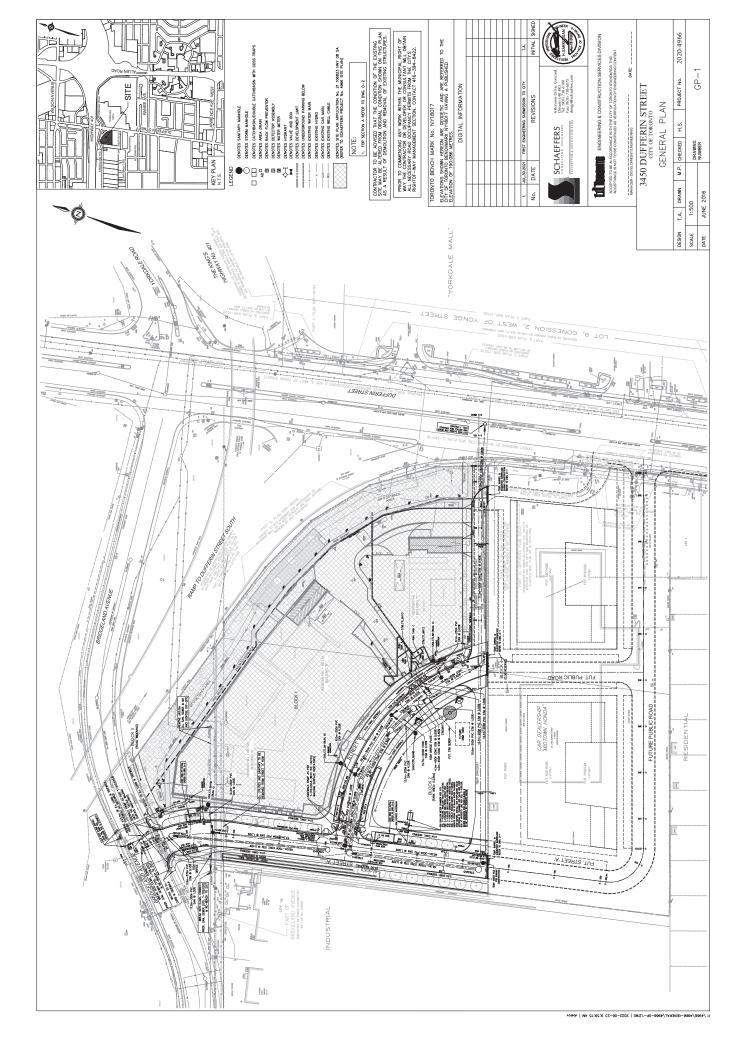
studies to be conducted in support of directing storm drainage to other available systems, subject to satisfying the City with respect to the appropriateness thereof.

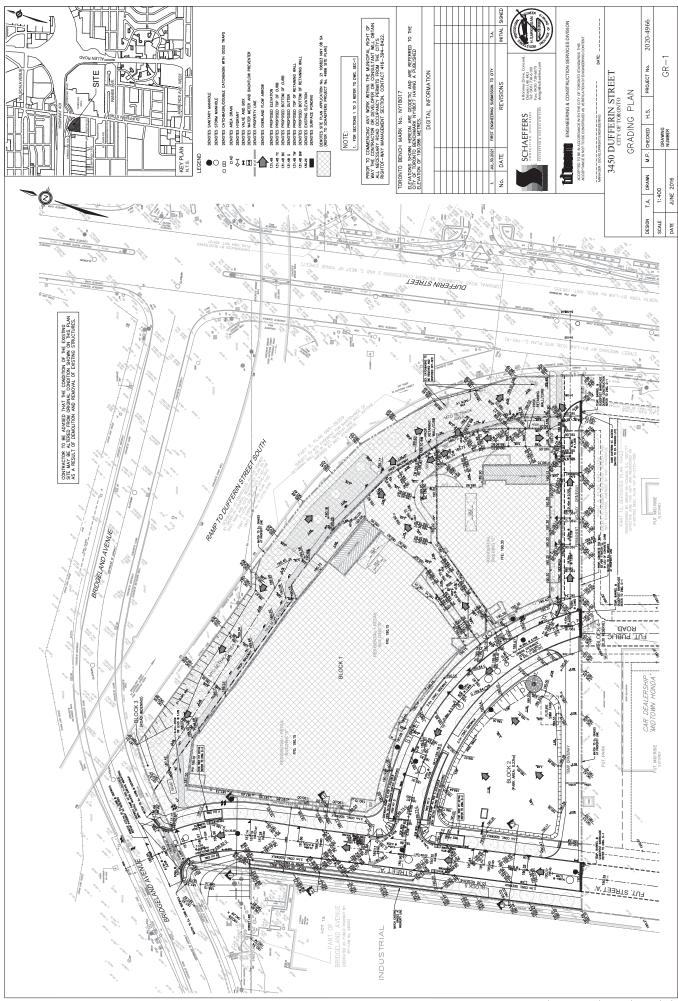

IMPLEMENTATION CONSIDERATIONS

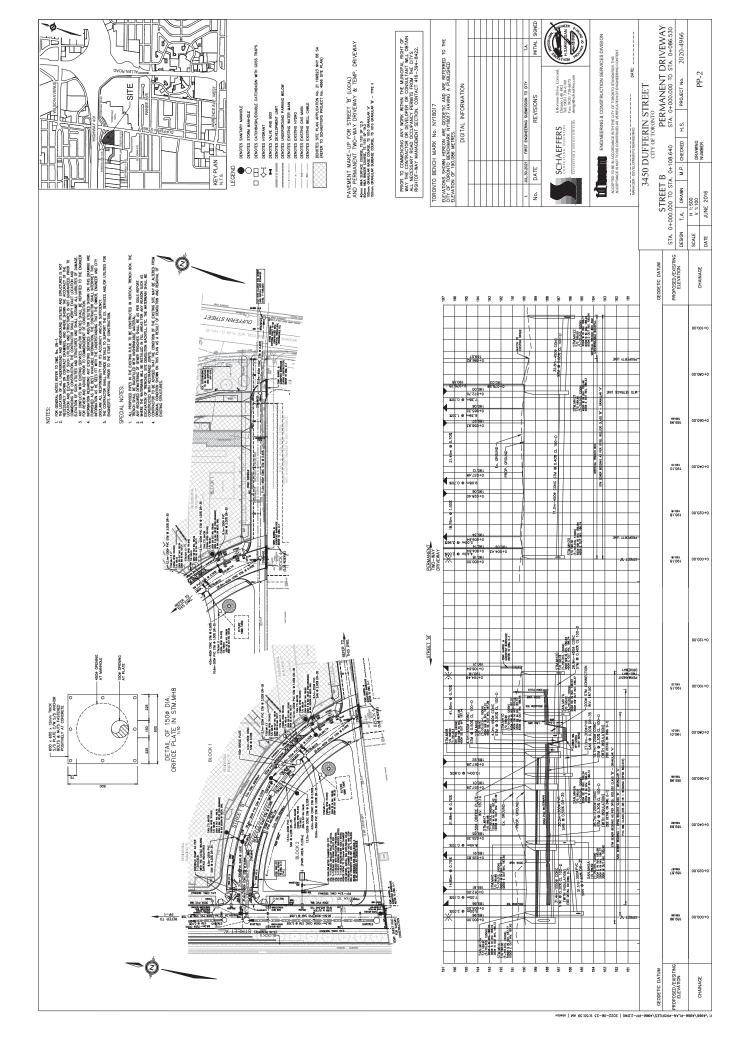
As with current development planning application processes, the proponent will be responsible for the preparation of Functional Servicing and Stormwater Management Reports in support of any applications. These reports should clearly document how the proposed servicing strategy for the development in question satisfies the WWFMG, as modified by the Preferred Solution noted above.

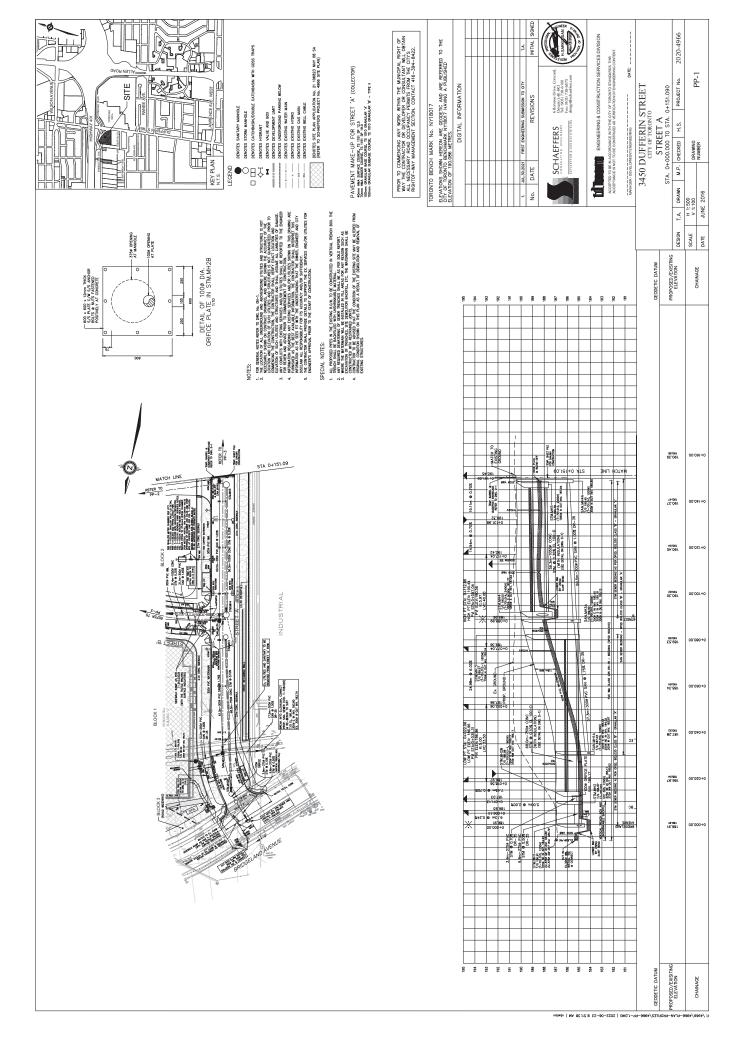
For larger sites, it may become necessary to test the impact of the development on the receiving downstream sewer network to determine whether there might be adverse impacts on the performance of the sewer system, depending on the extent of implementation of measures identified in the relevant Basement Flooding Study Area Class EAs. The need for this work should be established in consultation with Toronto Water and can be undertaken with the use of the InfoWorks CS dynamic hydraulic models developed as part of the Basement Flooding Study Area Class EAs.

Very small sites may be challenged to meet the guideline relating to water balance or water quality control. In such instances, it should be demonstrated by the development proponent that meeting these guidelines would be either overly burdensome or impossible. As an alternative in these cases, the City may consider accepting cash-in-lieu financial contributions which may be applied toward other improvements in the same watershed. Similarly, smaller sites may be challenged to meet the 75 L/s/ha controlled release rate criterion and, in such instances, the City may consider accepting vortex-flow control devices that offer lower release rates with protection against clogging.






PLAN OF SURVEY SHOWING TOPOGRAPHICAL INFORMATION OF PART OF LOTS 13 AND 14 REGISTERED PLAN 867 LOT 12 AND PART OF LOTS 1 AND 2 REGISTERED PLAN 3336 CITY OF TORONTO (FORMERLY CITY OF NORTH YORK) SCALE 1:250 KRCMAR SURVEYORS LTD. 2022 METRIC: DISTANCES AND COORDINATES SHOWN HEREON ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048 BEARING BE-ARING'S SHOWN HEREON ARE GRID BEARINGS DERIVED FROM HORIZONTAL CONTROL MONUMENTS No. 02019824064 AND No. 02019764012, AND ARE RETERRED TO HE'S 'MIN COOMDATE SYSTEM, ZORI 10, CENTRAL MERED 73'00'WEST LONATUDE. (S' MODIFE THANSVERSE MERCATOR PROJECTION, NAD 83 (CSRS)(1997)). DISTANCES SHOWN HEREON ARE GROUND DISTANCES AND CAN BE CONVERTED TO GRID DISTANCES BY MULTIPLYING BY A COMBINED SCALE FACTOR OF 0.99990.
 SPECIFIED
 CON TROL
 POIL
 3" M TM ZONE 10 COC ND 83 (CSRS)(2010)(CENTRAL MERIDIAN 79 THE MTM COORDWATES LISTED BELOW ARE TO URBAN AS SUBSECTION 14(2) OF CHARD REALINGT 216/06 FIED POINT COORDINATE WALLIES SHOWN ARE FOR GEODRAPHIC INFORMATION SYSTEM INTEGRATION COORDINATES CANNOT, IN THEMSELVES, RE USED TO RE-ESTABLISH CORPORES OR BOLINGARES SHOWN ON THIS PLAN. ELEVATION ELEVATION ELEVATIONS SHOWN HEREON ARE GEODETIC AND ARE RELATED TO CITY OF TORONTO BENCH MARK No. 12319651816 HAVING AN ELEVATION OF 190.108 METRES. (COVID-1928: PREVIDE) ND DHOTES SURVEY MORANET FORO DHOTES SURVEY AN AUTO ANT ANT ANT ANT DHOTES SURVEY AN AUTO ANT ANT ANT DHOTES SURVEY AN AUTO ANT DHOTES FOR SAM DHOTES FOR SAM DHOTES FOR SAM DHOTES ON AUTO DHOTES AUTO DHO EGEND SIB SSIB IB RIB (0U) (WIT) (RP) (P) (P1) (P2) (P3) (P4) ALL BUILDING TIES TAKEN TO BRICK UNLESS NOTED OTHERWISE. ALL FOUND BARS ARE BY KRCMAR SURVEYORS LTD., OLS. (1370) UNLESS NOTED OTHERWISE TOTAL SITE AREA= 1.6680 ha SURVEY REPORT . THE RE-ESTABLISHMENT OF THE SUBJECT PROPERTY BOUNDARIES IS BASED ON INFORMATION CONTAINED IN THE RELEVANT TITLE DOCUMENT REGISTERED PLANS AND ON THE EVBENCE OF PRIOR SURVEYS FOUND DURING THE COURSE OF PREPARING THE SUBJECT SURVEY. THE TYPE AND LOCATION OF THE EXISTING BUILDINGS AND OTHER IMPROVEMENTS, FENCES ETC., ON OR NEAR THE SUBJECT PROPERTY A AS SHOWN ON THE SURVEY PLAN. COMPLIANCE WITH MUNICIPAL ZONING REQUIREMENTS IS NOT CERTIFIED BY THIS REPORT. HIS INSPAR. 4. SUBJECT TO EASEMENT AS IN INST. INVE28544. 5. SUBJECT TO EASEMENT AS IN INST. INVE76059. 6. SUBJECT TO EASEMENT AS IN INST. AT5114265 OVER, PARTS 7, 8, 9, 10, 11 AND 12, AN 4084-JOSEK 7. TOGETHER WITH A RIGHT-OF-WAY AS IN INST. NY546335 OVER PART 2, PLAN 65R-30644. TOGETHER WITH EASEMENT AS IN INST. AT5114260 OVER PART 6, PLAN 65R-30644. 9. LAND COMPRISES ALL OF PIN 10236-0025(LT). SURVEYOR'S CERTIFICATE THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER THEM. 2. THE SURVEY WAS COMPLETED ON THE 21st DAY OF JUNE, 2022. DATE JUNE 22 . 2022 CONTRACT OF SURVEY RELATES TO AOLS PLAN SUBMISSION FORM NUMBER V-26206 COPYRIGHT 2022 KRCMAR SURVEYORS LT This document has been lasted in confider Unauthorized reproduction, distribution, all or use, in whole or in part, is strictly pro D.L. DRAWN: S.D. CHECKED: SJAR JOB NO
 B MARE:
 22-1238701
 PL0T NFO.
 09-19-223/37/2022
 WORK 00DER NO:


 1137 Corters Sires
 Tammell ON LL43/346
 993-78.0053
 F905.738.9221
 www.

 PLAN
 AVAILABLE
 AT
 www..ProtectYourBoardaries.ca
 KRCMTR

3400 DUFFERIN STREET

APPLICATION FOR ZONING BY-LAW AMENDMENT

PROJECT TEAM

нетоника Собязание собязание полнание пол

ARCHITECTURAL SHEET LIST

Sheet	Drawing Name	Current Revision
A000 PROJECT INFORM	IATION	
A000	COVER SHEET	
A001	STATISTICS	
A100 SITE		
A100	CONTEXT PLAN	
A101	SURVEY	
A102	ROOF PLAN	
A103	GROUND FLOOR SITE PLAN	
A105	LEVEL P1 FLOOR PLAN	
A200 PLANS		
A200	LEVEL 1 FLOOR PLAN	
A201	LEVEL 2 FLOOR PLAN	
A202	LEVEL 3 FLOOR PLAN	
A203	LEVEL 4 FLOOR PLAN	
A204	LEVEL 5 FLOOR PLAN	
A205	LEVEL 6 FLOOR PLAN	
A206	LEVEL 7 FLOOR PLAN	
A208	LEVEL 9 FLOOR PLAN	
A209	LEVEL 10 FLOOR PLAN	
A210	LEVEL 11-29 FLOOR PLAN	
A300 ELEVATIONS		
A300 ELEVATIONS A300	SITE ELEVATIONS	
A301	SITE ELEVATIONS	
A302	BUILDING A FLEVATIONS	
A302	BUILDING & ELEVATIONS BUILDING B ELEVATIONS	
A304	BUILDING C FLEVATIONS	
7,204	BOLDING C ELEVATIONS	
A400 SECTIONS		
A400	SITE SECTIONS	
A401	SITE SECTIONS	
A402	SITE SECTIONS	
A500 MASSING VIEW		
A500	MASSING VIEW	
L100 PLANS		
L101	LANDSCAPE PLAN	1
L102	LANDSCAPE ROOF PLANS	
L103	PLANTING & SOIL VOLUME PLAN	1
L400 DETAILS		
L401	LANDSCAPE DETAILS	
L402	LANDSCAPE DETAILS	
L403	COT TYP DETAILS	

gh3* s5 OSSINGTON AVE, SUITE 100 Terento, CN, Canada M6J 2Y9 416 915 1791

COLLECDEV 3400 DUFFERIN STREET

TORONTO

SCALE PRIDJECT NOL 202211 ISSUE DATE -COVER SHEET

Rev. Date based

1.0 SUMMARY

GROSS SITE AREA: 16,680m² Total GFA: 60,811 m² FSI: 3.65 New residential Units: 834

PART B - BUILDING A Site Area: 4,046 m² GFA: 27,947 m² PART D - BUILDING B Site Area: 4,079 m² GFA: 26,971 m² FSI: 6.6 New Residential UNIT PART E - BUILDING C Site Area: 1,811 m² GFA: 5,805 m² FSI: 3.1 New Residential Units: 75 TIAL UNITS: 371

3.0 FLOOR AREA

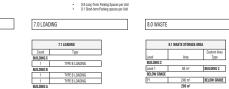
*GFA calculated per Area Plans, A1001 - A1003

								2.2 FLOOP	R AREA										2.3 F	RESIDENTI	AL UNITS			
					CGA							GFA			Ame	ally	Level			UNIT COUR	IT		Total	To
Level	# of Levels	GCA/Level (m ²)	Total CGA (m²)	GCA (sf)	Residential GCA (m2)	Residential GCA (sl)	Loading GCA (m2)	Parking GCA (m2)	GFA Deductions (m2)	GFA (SF)	GFA (m2)	Residential GFA (m2)	Non-Resi / Retail GFA (m2)	Leasable (m2)	Indoor Amenity (m2)	Outdoor Amenity (m2)		18	1B+D	28	28+D	38	Units/Floo	8
DW GRADE																	BELOW GRADE							
	1	8659 m²	8659 m²	93201 SF	8659 m²	93201 SF	0 m²	5m 9238	8536 m²	1320 SF	123 m²	123 m ²	0 m²	9 m²	0 m ²	0 m²	P2	0	0	0	0	0	0	Т
	1	8518 m²	8518 m²	91683 SF	8518 m²	91683 SF	0 m²	518 m ²	8352 m²	1786 SF	166 m²	166 m²	0 m²	² m 0	0 m ²	0 m²	P1	0	0	0	0	0	0	+
W GRADE TO	ŤAL.		17176 m²	184884 SF	17176 m²	184884 SF	0 m²	17176 m²	16888 m²	3106 SF	289 m²	289 m²	5m 0	0 m²	0 m²	0 m²	BELOW GRADE TOTAL	0	0	0	0	0	0	-
ING A																	BUILDING A							
1	1	2530 m²	2440 m²	26260 SF	2440 m²	26260 SF	345 m²	² m 0	717 m²	18537 SF	1722 m²	1722 m²	4m 0	1084 m²	89 m²	0 m ²	Level 1	5	- 4	7	0	2	18	
2	1	2478 m²	2170 m²	23355 SF	2170 m ²	23355 SF	0 m²	0 m²	5m 29	22331 SF	2075 m²	2075 m²	5m 0	1878 m²	5m 0	0 m²	Level 2	7	7	11	0	3	28	
3	1	2478 m²	2170 m²	23355 SF	2170 m²	23355 SF	0 m²	0 m²	261 m ²	20551 SF	1909 m²	1909 m²	5m 0	1878 m²	5m 0	0 m²	Level 3	7	7	11	0	3	28	
4	1	2478 m²	2170 m²	23355 SF	2170 m²	23355 SF	0 m ²	0 m²	95 m²	22331 SF	2075 m²	2075 m²	5m 0	1878 m²	5m 0	0 m²	Level 4	8	6	11	0	3	28	_
5	1	2274 m ²	2057 m²	22144 SF	2057 m²	22144 SF	0 m²	0 m²	5m 08	21287 SF	1978 m²	1978 m²	5m 0	1782 m²	5m 0	0 m²	Level 5	8	6	10	0	3	27	
6	1	2289 m²	2073 m²	22313 SF	2073 m²	22313 SF	0 m ²	0 m²	95 m²	21287 SF	1978 m²	1978 m²	5m 0	1782 m²	5m 0	0 m²	Level 6	6	6	12	0	3	27	
7	1	1312 m ²	1254 m²	13499 SF	1254 m²	13499 SF	0 m²	² m 0	312 m²	10136 SF	942 m²	942 m²	0 m²	857 m²	277 m²	0 m²	Level 7	0	8	2	0	2	12	
8	1	1034 m ²	5m 388	10511 SF	986 m²	10611 SF	0 m²	5m 0	296 m²	7421 SF	689 m²	689 m²	0 m ²	601 m²	227 m²	224 m²	Level 8	0	8	2	0	0	10	
9	1	794 m²	746 m²	8835 SF	746 m²	8035 SF	0 m²	0 m²	50 m²	7495 SF	696 m²	696 m²	0 m²	701 m²	0 m²	0 m²	Level 9	0	6	2	1	1	10	
10	1	794 m²	746 m²	8835 SF	746 m ²	8035 SF	0 m²	5m 0	5m 29	7035 SF	654 m²	654 m²	0 m²	701 m²	0 m ²	0 m²	Level 10	0	6	2	1	1	10	
11-29	19	794 m²	14183 m²	152664 SF	14183 m²	152664 SF	0 m²	0 m²	953 m²	142408 SF	13230 m²	13230 m²	5m 0	13327 m²	5m 0	0 m ²	Level 11-29	0	114	38	19	19	10	
IING A TOTA	i	;	30995 m²	333627 SF	30995 m²	333627 SF	345 m²	0 m²	3048 m²	300821 SF	27947 m²	27947 m²	⁵ m 0	26469 m²	593 m²	224 m²	BUILDING A TOTAL	41	178	108	21	40	208	
DING B																	BUILDING B							
1	1	2342 m ²	2342 m²	25208 SF	1131 m ²	12179 SF	359 m²	0 m²	672 m²	17978 SF	1670 m ²	593 m²	1077 m²	1285 m²	134 m²	0 m²	Level 1	3	1	0	0	0	4	-
2	1	1693 m²	1558 m²	16772 SF	1558 m ²	16772 SF	0 m²	0 m²	5m 69	15705 SF	1459 m²	1459 m²	5m 0	1427 m²	5m 0	0 m²	Level 2	9	5	4	0	3	21	1
3	1	2218 m²	1970 m²	21205 SF	1970 m²	21205 SF	0 m²	0 m²	94 m²	20191 SF	1876 m²	1876 m²	5m 0	2093 m²	5m 0	0 m²	Level 3	10	6	9	0	4	29	7
4	1	2374 m ²	2126 m ²	22882 SF	2126 m ²	22882 SF	0 m²	0 m²	94 m²	21868 SF	2032 m²	2032 m²	5m 0	2093 m²	5m 0	0 m ²	Level 4	11	5	9	0	4	29	1
5	1	2155 m²	1977 m²	21281 SF	1977 m ²	21281 SF	0 m²	0 m²	94 m²	20268 SF	1883 m²	1883 m²	5m 0	1873 m²	5m 0	0 m²	Level 5	12	4	10	0	2	28	-
6	1	2155 m ²	1977 m²	21281 SF	1977 m²	21281 SF	0 m ²	0 m²	94 m²	20268 SF	1883 m²	1883 m²	5m 0	1873 m²	5m 0	0 m²	Level 6	12	4	10	0	2	28	_
7	1	1322 m²	1265 m²	13512 SF	977 m²	10519 SF	0 m²	5m 0	367 m²	9665 SF	898 m²	898 m²	0 m²	857 m²	287 m²	540 m²	Level 7	0	8	2	0	2	12	-
8	1	1034 m²	985 m²	10511 SE	758 m²	8173.SF	0.02	0.m2	355 m²	6793 SE	631 m ²	631 m ²	0.02	648 m²	227 m ²	231 m²	Level 8	0	8	2	0	0	10	-
9	1	794 m ²	747 m²	8036 SF	747 m ²	8036 SF	0 m²	5m 0	49 m²	7504 SF	697 m ²	697 m ²	0 m ²	702 m ²	0 m ²	0 m ²	Level 9	0	6	2	1	1	10	-
10	1	794 m²	747 m²	8036 SF	747 m ²	8036 SF	0.02	5m 0	49 m²	7504 SF	697 m²	697 m²	0 m²	702 m²	0.02	0 m²	Level 10	0	6	2	1	1	10	-
	19	794 m ²	14184 m ²	152677 SF	14184 m ²	152677 SF	0 m ²	0 m ²	939 m²	142567 SF	13245 m²	13245 m²	5m 0	13331 m²	5m 0	0 m ²	Level 11-29	0	114	38	19	19	10	-
ING B TOTA	i –		29878 m²	321600 SF	28153 m²	303039 SF	359 m²	0 m²	2907 m²	290311 SF	26971 m²	25894 m²	1077 m²	25886 m²	647 m²	770 m²	BUILDING B TOTAL	57	167	88	21	38	191	
DING C																	BUILDING C							
1	1	1035 m ²	1035 m²	11145 SF	244 m²	2624 SF	446 m ²	5m 0	610 m²	4578 SF	425 m²	137 m²	288 m²	288 m²	0 m²	504 m²	Level 1	0	0	0	0	0	0	
12	1	973 m²	973 m²	10477 SF	973 m²	10477 SF	0 m²	5m 0	42 m²	10023 SF	931 m²	931 m²	0 m²	786 m²	59 m²	0 m²	Level 2	0	9	3	0	1	13	7
13	1	973 m²	973 m²	10477 SF	973 m²	10477 SF	0 m²	5m 0	42 m²	10023 SF	931 m²	931 m²	0 m²	786 m²	59 m²	0 m²	Level 3	0	9	3	0	1	13	_
14	1	826 m²	826 m²	8894 SF	759 m²	8168 SF	0 m²	5m 0	110 m²	7714 SF	717 m²	717 m ²	0 m²	658 m²	67 m²	0 m²	Level 4	0	7	3	0	1	11	-
5	1	826 m²	826 m²	8894 SF	759 m²	8168 SF	0 m²	5m 0	110 m ²	7714 SF	717 m ²	717 m ²	0 m²	668 m²	67 m²	0 m²	Level 5	0	7	3	0	1	11	-
6	1	826 m²	826 m²	8894 SF	759 m²	8168 SF	0 m²	5m 0	110 m²	7714 SF	717 m²	717 m ²	0 m²	658 m²	67 m²	0 m²	Level 6	0	7	3	0	1	11	-
7	1	618 m²	473 m²	5088 SF	348 m²	3742 SF	0 m²	5m 0	167 m²	3291 SF	306 m²	306 m²	0 m²	419 m ²	125 m²	0 m²	Level 7	0	2	1	0	1	4	-
8	1	473 m²	473 m²	5088 SF	473 m ²	5068 SF	0 m²	5m 0	42 m²	4637 SF	431 m ²	431 m ²	0 m²	398 m²	0 m²	0 m ²	Level 8	0	3	2	0	1	6	-
19	1	473 m ²	473 m²	5088 SF	473 m ²	5088 SF	0 m²	5m 0	42 m ²	4637 SF	431 m ²	431 m ²	0 m ²	398 m²	0 m ²	0 m²	Level 9	0	3	2	0	1	6	-
10	1	170 m ²	170 m ²	1826 SF	5m0	0 SF	0 m2	5m 0	170 m²	0 SF	5m 0	0 m²	0 m2	5m 0	0 m2	0 m ²	Level 10	0	0	Ū	0	0	0	-
DING C TOTA	i –		7049 m ²	75871 SF	5760 m²	61998 SF	445 m²	0 m²	1444 m ²	60332 SF	5605 m²	5317 m ²	288 m²	5081 m²	445 m²	504 m²	BUILDING C TOTAL	0	47	20	0	8	75	-
		61301 m ²	85097 m ²	915982 SF	82084 m ²	883548 SF	1149 m ²	17176 m²	24286 m ²	654569 SF	60811 m ²	59447 m²	1365 m²	58436 m ²	1586 m ²	1498 m ²	GRAND TOTAL	98	392	216	42	85	474	

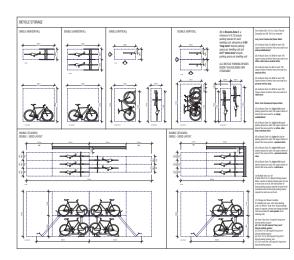
Custom Area Type

		4.1 AMENITY		
Tetal Linits		Ane	nity	
Total Utilis	Outdoor	Outdoor / Unit	Indoor	Indoor / Unit
BUILDING A				
388	224 m²		593 m²	
BUILDING B				
373	770 m²		647 m²	

5.0 PARKING


6.0 STORAGE

			5.1 CAR I	MRKING			
	Resid	ential Car P	arking	Vis			
Level	Regular	BF	Total	Regular	BF	Total	Total Car Parking
UILDING A							
P1	74	0	74	0	0	0	74
P2	95	0	95	0	0	0	95
	169	0	169	0	0	0	169
BUILDING B							
P1	69	0	69	0	0	0	69
P2	91	0	91	0	0	0	91
	160	0	160	0	0	0	160
BUILDING C							
P1	20	0	20	0	0	0	20
P2	26	0	26	0	0	0	26
	46	0	46	0	0	0	45
TOTAL	375	0	375	0	0	0	375


		5.2 BICYCL	E PARKING		
		Bicycle	Total Bicycle		
	Level	Long-Term	Short-Term	Parking	
P1		162	0	162	
	and at the second se	102	28	162	
Le	1 194	284	28	312	
	ILDING B			312	
	ILDING B			312	

vel 1 104 28 132 240 28 268 UILDING C evel 1 0 52 RAND TOTAL 632 576

Bicycle Parking Rates

BUILDING

Toronto Green Standard Version 4.0 Tier 1

General Project Description				
SITE AREA				
TOTAL GROSS FLOOR AREA				
RESIDENTIAL				
RETAIL				
COMMERCIAL				
TOTAL NUMBER OF RESIDENTIAL UNITS				

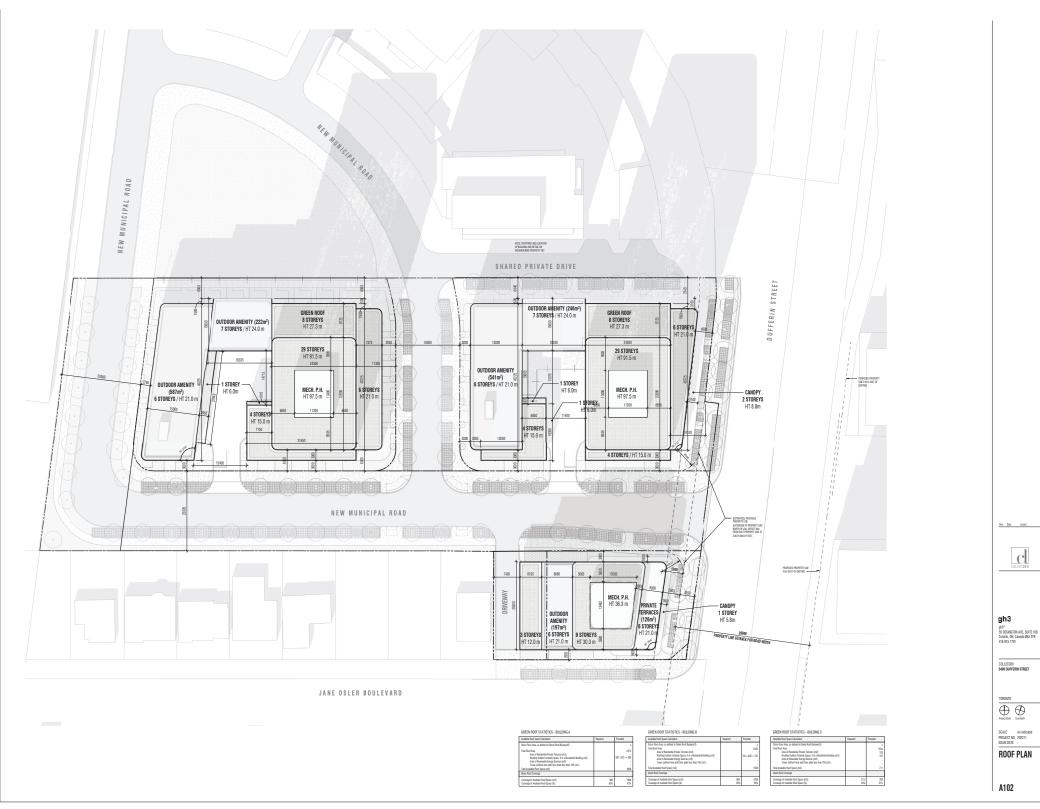
Section 1: For Stand None Zoning Bylaw Amendment Applications and Sile Plan Control Applications

Automobile Infrastructure	Required	Proposed	Percentage
NUMBER OF PARKING SPACES			
NUMBER OF EV PARKING SPACES (RESIDENTIAL)			
NUMBER OF EV PARKING SPACES (NON-RESIDENTIAL)			
Cycle Infrastructure	Required	Proposed	Percentage
NUMBER OF LONG-TERM BICYCLE PARKING SPACES (ALL-USES)			
NUMBER OF LONG-TERM BICYCLE PARKING LOCATED ON:			
A) FIRST STORY OF BUILDING			
B) SECOND STOREY OF BUILDING			
C) FIRST LEVEL BELOW-GROUND			
D) SECOND LEVEL BELOW-GROUND (ALSO INDICATE % OF NET AREA OF LEVEL OCCUPIED BY BICYCLE PARKING)			
E) OTHER LEVELS BELOW-GROUND (ALSO INDICATE % OF NET AREA OF LEVEL OCCUPIED BY BICYCLE PARKING)			
NUMBER OF SHORT-TERM BICYCLE PARKING SPACES			
NUMBER OF SHORT-TERM BICYCLE PARKING SPACES (NON-RESIDENTIAL)			
Tree Canopy	Required	Proposed	Percentage
TOTAL SOIL VOLUME (40% OF THE SITE AREA / 66m2 X 30m3)			
SOIL VOLUME PROVIDED WITHIN THE SITE AREA (m3)			
SOIL VOLUME PROVIDED WITHIN THE PUBLIC BOULEVARD (m3)			

Section 2: For Sile Plan Control Applications

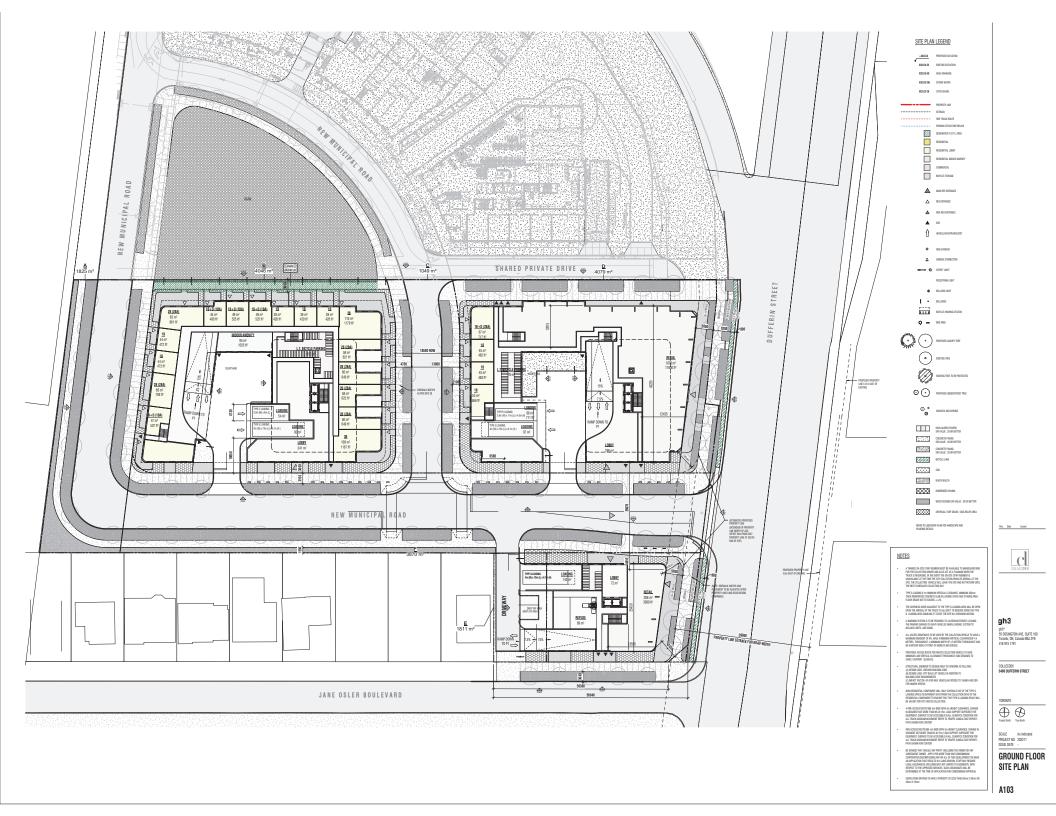
Cycle Infrastructure	Required	Proposed	Percentage
NUMBER OF SHORT-TERM BICYCLE PARKING SPACES (ALL USES) AT GRADE OR ON FIRST LEVEL BELOW Grade			
NUMBER OF PUBLICLY ACCESSIBLE BICYCLE PARKING SPACE			
NUMBER OF ENERGIZED OUTLETS FOR ELECTRIC BICYCLES			
Tree Canopy	Required	Proposed	Percentage
TOTAL SITE AREA (m2)			
TOTAL SOIL VOLUME (40% OF THE SITE AREA / 66m2 X 30m3)			
TOTAL NUMBER OF TREES PLANTED			
NUMBER OF SURFACE PARKING SPACES (IF APPLICABLE)			
NUMBER OF SHADE TREES LOCATED IN SURFACE PARKING AREA			
Landscaping & Biodiversity	Required	Proposed	Percentage
TOTAL NON-ROOF HARDSCAPE AREA (m2)			
TOTAL NON-ROOF HARDSCAPE AREA TREATED FOR URBAN HEAT ISLAND (IMNIMUM RESIDENTIAL 75% OR NON-RESIDENTIAL 50%) (III2)			
AREA OF NON-ROOF HARDSCAPE TREATED WITH: (INDICATE m2))			
A) HIGH-ALBEDO USRFACE MATERIAL			
B) OPEN-GRID PAVEMENT			
C) SHADE FROM TREE CANOPY			
D) SHADE FROM HIGH-ALBEDO STRUCTURES			
E) SHADE FROM ENERGY GENERATION STRUCTURES			
TOTAL NUMBER OF PLANTS			
TOTAL NUMBER OF NATIVE PLATINS AND % OF TOTAL PLANTS			
AVAILABLE ROOF SPACE (m2)			
AVAILABLE ROOF SPACE PROVIDED AS GREEN ROOF (m2)			
AVAILABLE ROOF SPACE PROVIDED AS COOL ROOF (m2)			
AVAILABLE ROOF SPACE PROVIDED AS SOLAR PANELS (m2)			
BIRD COLLISION DETERRENCE	Required	Proposed	Percentage
TOTAL AREA OF GLAZING OF ALL ELEVATIONS WITHIN 16m ABOVE GRADE			
TOTAL AREA OF TREATED GLAZING (MINIMUM 85% OF TOTAL AREA OF GLAZING WITHIN 16m ABOVE GRADE) (m2)			
PERCENTAGE OF GLAZING WITHIN 16M ABOVE GRADE TREATED WITH:			
A) VISUAL MARKERS			
B) NON-REFLECTIVE GLASS			
C) BUILDING INTEGRATED STRUCTURES			

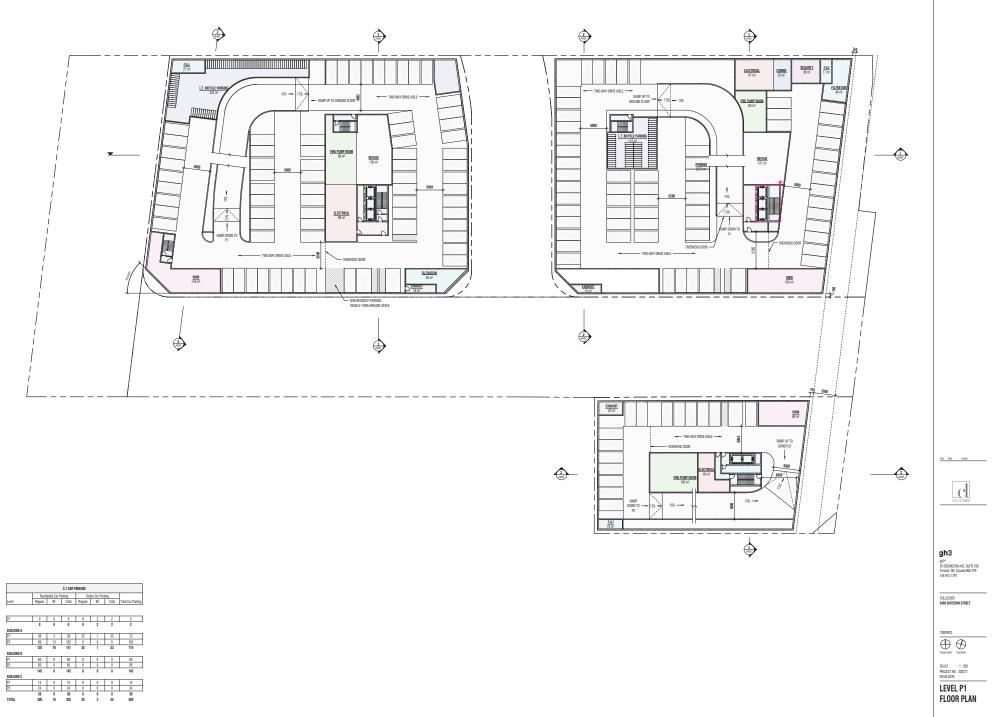
cl


Rev. Date bosed

gh3 gh3* 55 OSSINGTON AVE, SUITE 100 Toronto, ON, Canada M6J 2Y9 416 915 1791

COLLECDEV 3400 DUFFERIN STREET


STATISTICS



A102

cl

Form Information

Form Name:	06. V2 Urban-X QL-A Form
Submitter Name:	Mike (4167952891)
Submission Date:	Jul 28, 2022 11:04:52 AM EDT

Project Information

Project Name: Project Number: Project Team:

Test Pit Information

Test Pit No.: Excavation Date: Excavation Location: Location Map -Choose Satellite Image 3400 Dufferin 139570 Mike Heifetz

1 Jul 28, 2022 3400 Dufferin St.

Exposed Utility Information

Target Utility:	FOC
Assumed Owner:	Rogers
Target SUE Quality Level:	QL-B
Measured Depth to Utility Top (m)	0.78
Estimated Pipe Diameter (mm)	100
Inferred Material from Surface Observation	Plastic
Exposed Utility Count	1
Additional Utilities Found ?	Yes
Exposed Utility:	FOC
Assumed Owner:	Rogers
Target SUE Quality Level:	QL-B
Measured Depth to Utility Top (m)	0.88
Estimated Pipe Diameter (mm)	60
Inferred Material from Surface Observation	Plastic
Exposed Utility Count	1

Excavation Information

Surface Type: Final Hole Depth (m): Final Hole Width (m): Final Hole Length (m): Notes:

Test Pit Photos:

Overview of TP Location

Detail of TP Location

Downhole Looking North

Natural Ground 1.15 0.4 0.8 Bigger hole due to locate being slightly off.

Downhole Looking East

Team Members:

Measured By: GPS By: Mike Heifetz Mike Heifetz

Form Information

Form Name:	06. V2 Urban-X QL-A Form
Submitter Name:	Mike (4167952891)
Submission Date:	Jul 28, 2022 11:05:10 AM EDT

Project Information

Project Name: Project Number: Project Team:

Test Pit Information

Test Pit No.: Excavation Date: Excavation Location: Location Map -Choose Satellite Image 3400 Dufferin 139570 Mike Heifetz

2 Jul 28, 2022 3400 Dufferin St.

Exposed Utility Information

Final Hole Length (m):

Target Utility:	EL
Assumed Owner:	Private
Target SUE Quality Level:	QL-B
Measured Depth to Utility Top (m)	0.40
Estimated Pipe Diameter (mm)	20
Inferred Material from Surface Observation	Direct Buried Insulated Cable
Square	No
Exposed Utility Count	1
Additional Utilities Found ?	No
Excavation Information	
Surface Type:	Natural Ground
Final Hole Depth (m):	0.5
Final Hole Width (m):	0.3

0.3

Test Pit Photos:

Overview of TP Location

Detail of TP Location

Downhole Looking North

Downhole Looking East

Team Members:

Measured By: GPS By: Mike Heifetz Mike Heifetz

Form Information

Form Name:	06. V2 Urban-X QL-A Form
Submitter Name:	Mike (4167952891)
Submission Date:	Jul 28, 2022 11:05:41 AM EDT

Project Information

Project Name: Project Number: Project Team:

Test Pit Information

Test Pit No.: Excavation Date: Excavation Location: Location Map -Choose Satellite Image 3400 Dufferin 139570 Mike Heifetz

3 Jul 28, 2022 3400 Dufferin St.

Exposed Utility Information

Final Hole Length (m):

Target Utility:	SL
Assumed Owner:	Private
Target SUE Quality Level:	QL-B
Measured Depth to Utility Top (m)	0.66
Estimated Pipe Diameter (mm)	40
Inferred Material from Surface Observation	Plastic
Square	No
Exposed Utility Count	1
Additional Utilities Found ?	No
Excavation Information	
Surface Type:	Asphalt
Pavement Thickness (mm):	80
Final Hole Depth (m):	0.8
Final Hole Width (m):	0.35

0.35

Test Pit Photos:

Overview of TP Location

Detail of TP Location

Downhole Looking North

Downhole Looking East

Team Members:

Measured By: GPS By: Mike Heifetz Mike Heifetz

Appendix B Stormwater Analysis

Stormwater Design Calculations Stormfilter Sizing (Contech)

Mixed-Use Development

Overall Development Runoff Coefficients

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

Block B (Building A)				
Conventional Roof	1,387	34.3%	0.90	0.31
Intensive Green Roof	1,088	26.9%	0.50	0.13
Landscape	0	0.0%	0.25	0.00
Landscape over P1	225	5.6%	0.45	0.03
Permeable Pavers	0	0.0%	0.55	0.00
Impervious	1,346	33.3%	0.90	0.30
Total Area	4,046	100%		0.77

Block E (Building C)										
Conventional Roof	672	40.7%	0.90	0.37						
Intensive Green Roof	362	21.9%	0.50	0.11						
Landscape		0.0%	0.25	0.00						
Landscape over P1	183	11.1%	0.45	0.05						
Permeable Pavers		0.0%	0.55	0.00						
Impervious	435	26.3%	0.90	0.24						
Total Area	1,652	100.0%		0.76						

Municipal ROW									
Conventional Roof	0	0.0%	0.90	0.00					
Green Roof	0	0.0%	0.50	0.00					
Landscape	1,771	26.7%	0.25	0.07					
Landscape over P1	0	0.0%	0.45	0.00					
Permeable Pavers	0	0.0%	0.55	0.00					
Impervious	4,870	73.3%	0.90	0.66					
Total Area	6,641	100%		0.73					

Block D (Building B)										
Conventional Roof	1,399	35.0%	0.90	0.31						
Intensive Green Roof	1,026	25.6%	0.50	0.13						
Landscape	0	0.0%	0.25	0.00						
Landscape over P1	571	14.3%	0.45	0.06						
Permeable Pavers	0	0.0%	0.55	0.00						
Impervious	1,006	25.1%	0.90	0.23						
Total Area	4,002	100%		0.73						

External Area									
Conventional Roof		0.0%	0.90	0.00					
Green Roof		0.0%	0.50	0.00					
Landscape	1,471	100.0%	0.25	0.25					
Landscape over P1		0.0%	0.45	0.00					
Permeable Pavers		0.0%	0.55	0.00					
Impervious		0.0%	0.90	0.00					
Total Area	1,471	100%		0.25					

Municipal ROW + External Area									
Conventional Roof	0	0.0%	0.90	0.00					
Green Roof	0	0.0%	0.50	0.00					
Landscape	3,242	40.0%	0.25	0.10					
Landscape over P1	0	0.0%	0.45	0.00					
Permeable Pavers	0	0.0%	0.55	0.00					
Impervious	4,870	60.0%	0.90	0.54					
Total Area	8,112	100%		0.64					

Overall Subdivision	(Not Includir	ng External A	Area)	
Conventional Roof	3,458	21.2%	0.90	0.19
Intensive Green Roof	2,476	15.2%	0.50	0.08
Landscape	1,771	10.8%	0.25	0.03
Landscape over P1	979	6.0%	0.45	0.03
Permeable Pavers	0	0.0%	0.55	0.00
Impervious	7,657	46.9%	0.90	0.42
Total Area:	16,341	100%		0.74

Mixed-Use Development

ALLOWABLE RELEASE RATE AND STORM SERVICE DESIGN

Mixed-Use Development																			Plan of Subdivisio
'IBI				I _{2-vear} =	21.8	- = 88.19) mm/hr	1			I _{100-year} =	59.7 (T) ^{0.80}	- = 250.3	32 mm/hr				=	3400 Dufferin Street
					(T) ^{6.76}						,	(T) ^{0.00}					Р	roject Number:	
																			28 July 2022 Jason Jenkins, P.Eng.
Street	From	То	A	R	AxR	Accum.	T _c	I	Q _{act}	Size of	Slope	Nominal	Full Flow	Actual Flow	Length	Time in	Total		
	МН	MH	(ha)			AxR	(min)	(mm/hr)	(l/s)	Pipe (mm)	(%)	Capacity Q _{cap} (L/s)	Velocity (m/s)	Velocity (m/s)	(m)	Sect. (min)	Time (min)	Q_{act}/Q_{cap}	Remarks
PRE-DEVELOPMENT RELEASE RA	TES																ļ		
A1 Pre - To Dufferin			1.4290	0.89	1.272	1.272	10.0	88.2	311.6		[[
A2 Pre - To Jane Osler			0.2100	0.90	0.189	0.189	10.0	88.2	46.3										
A3 Pre - To Jane Osler			0.0290	0.54	0.016	0.016	10.0	88.2	3.8										
Total Subdivision			1.6680	1					357.9										
EXT-01 - To Jane Osler			0.0645	0.25	0.016	0.016	10.0	88.2	4.0										
EXT-02 - To Dufferin			0.0826	0.25	0.021	0.021	10.0	88.2	5.1										
ALLOWABLE RELEASE RATES (W	WFMG)																		
Municipal ROW			0.6641	0.50	0.332	0.332	10.0	88.2	81.3	I									
Block B (Building A)			0.4046	0.50	0.202	0.202	10.0	88.2	49.6		L	1	1						
Block D (Building B)			0.4002	0.50	0.202	0.202	10.0	88.2	49.0										
Block E (Building C)			0.1652	0.50	0.083	0.083	10.0	88.2	20.2			1	1						
Total Subdivision (Less Dufferin Wide	ening)		1.6341						200.2										
ALLOWABLE RELEASE RATES (LI		L/s/ba DER /																	
Municipal ROW			0.6641	D1)	1	1	[1	49.8	1		[1			1			
Block B (Building A)			0.4046						30.3										
Block D (Building B)			0.4002						30.0										
Block E (Building C)			0.1652						12.4										
Total Subdivision (Less Dufferin Wide	ening)		1.6341						122.6										
STORM SERVICE CONNECTIONS	•	1		1	Orif.(mm)	Area (m2)	depth (m)	head (m)	Q (L/s)				T				-		
Block B (Building A)	Ctrl MH1	Street C		k=0.6	95	0.00709	1.80	1.75	26.2	200	2.00%	46.38	1.48	1.51	10.0	0.1	10.1	56%	
Block D (Building B)	Ctrl MH2	MH6		k=0.6	95	0.00709	1.44	1.39	23.3	200	2.00%	46.38	1.48	1.48	10.0	0.1	10.1	50%	
Block E (Building C)	Ctrl MH3	Street C		k=0.6	75	0.00442	0.88	0.84	11.3	200	2.00%	46.38	1.48	1.21	10.0	0.1	10.1	24%	
STORM SEWER DESIGN					Orif.(mm)	Area (m2)	depth (m)	head (m)					1			1			
Total Controlled Flow from Road	OGS	MH8		k=0.8	200	0.03142	1.21	1.11	120.1	450	0.50%	201.60	1.27	1.32	4.4	0.1	10.1	60%	
SIZING WATER QUALITY UNITS						ļ				<u> </u>		<u> </u>	ļ	ļ					
Block B (only areas requiring treatme	nt)		0.0569	0.90	0.051	0.051	10.0	88.2	12.5	-		[1						
Block B (only areas requiring treatme			0.0569	0.90	0.051	0.051	10.0	131.8	12.5										
Block B (only areas requiring treatme	•		0.0569	0.90	0.051	0.051	10.0	250.3	35.6										
Block D (only areas requiring treatme			0.0569	0.90	0.051	0.051	10.0	88.2	10.2										
Block D (only areas requiring treatme			0.0463	0.90	0.042	0.042	10.0	131.8	10.2		ļ	<u> </u>							
Block D (only areas requiring treatme	•		0.0463	0.90	0.042	0.042	10.0	250.3	29.0	<u> </u>									
Block D (only areas requiring treatme Block E (only areas requiring treatme	•		0.0463	0.90	0.042	0.042	10.0	88.2	29.0 5.2										
	,								5.2 7.7										
Block E (only areas requiring treatme			0.0234	0.90	0.021	0.021	10.0	131.8				<u> </u>							
Block E (only areas requiring treatme	in.)		0.0234	0.90	0.021	0.021	10.0	250.3	14.6										

Plan of Subdivision

3400 Dufferin Street Rational Method - 100 Year Storm Mixed-Use Development Plan of Subdivision 59.7 I _{100-year} = ____ = 250.32 mm/hr (10)^{0.8} 3400 Dufferin Street 0.8112 Area of Municipal POW + External Drainage Area -

B

Project Name: Project Number:	3400 Dufferin Street 139570	Area o	0.8112 0.64		
Date: Time (min)	28 July 2022 Intensity (mm/hr)	Q-100 (L/s)	Q-Blocks (L/s)	ifice Discharge (L/s) = Q-stored (L/s)	120.1 Storage Vol. (m³)
0	0.0	0.000		0.000	0.000
10	250.3	361.121	72.750	313.773	188.264
20	143.8		12.150		
30	143.8	207.410 149.953	I Î	160.062 102.606	192.074 184.690
40	82.6	119.126		71.778	172.267
40 50	69.1	99.650		52.302	156.907
60 70	59.7 52.8	86.126 76.133		38.778 28.786	139.600 120.899
70 80	52.8 47.4	68.420	Allowable Peak	28.786 21.072	120.899
90 100	43.2 39.7	62.267 57.234	Discharge from Blocks B, D, and E	14.919 9.886	80.565 59.317
110 120	36.8 34.3	53.032 49.466	(Development Blocks)	5.684 2.118	37.517 15.253
120	34.3	46.398		0.000	0.000
140	30.3 28.7	43.727		0.000 0.000	0.000 0.000
150 160	20.7 27.2	41.379 39.297		0.000	0.000
170	25.9	37.436		0.000	0.000
180	24.8	35.763		0.000	0.000
190	23.7	34.249		0.000	0.000
200	22.8	32.872		0.000	0.000
210	21.9	31.614		0.000	0.000
220	21.1	30.459		0.000	0.000
230	20.4	29.395		0.000	0.000
240	19.7	28.411		0.000	0.000
250	19.1	27.498		0.000	0.000
260	18.5	26.649		0.000	0.000
270	17.9	25.856		0.000	0.000
280	17.4	25.115		0.000	0.000
290	16.9	24.419		0.000	0.000
300	16.5	23.766		0.000	0.000
310	16.0	23.151		0.000	0.000
320	15.6	22.570		0.000	0.000
330	15.3	22.021		0.000	0.000
340	14.9	21.502		0.000	0.000
350	14.6	21.009		0.000	0.000
360	14.2	20.540		0.000	0.000

Storage Volume Required (cu.m) = Storage Volume Provided (cu.m) =

HGL Depth (m) = Orifice Diameter (mm) =

^{192.1} 197.9 1.2 200

Mixed-Use Development

1

r

Water Quality Calculations

Plan of Subdivision

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

Surface	Area (m²)		TSS Removal	Overall TSS Removal
Conventional Roof	0	0.0%	80	0.0
Green Roof	0	0.0%	80	0.0
Landscape	1,771	26.7%	80	21.3
Landscape over P1	0	0.0%	80	0.0
Permeable Pavers	0	0.0%	80	0.0
Impervious	4,870	73.3%	0	0.0
Total Area:	6,641	100%		21.3

TSS Removal (Un-Treated)

Treatment Required

TSS Removal (With Treatment)

Surface	Area (m ²)		TSS Removal	Overall TSS Removal
Conventional Roof	0	0.0%	80	0.0
Green Roof	0	0.0%	80	0.0
Landscape	1,771	26.7%	80	21.3
Landscape over P1	0	0.0%	80	0.0
Permeable Pavers	0	0.0%	80	0.0
Impervious	4,870	73.3%	80	58.7
Total Area:	6,641	100%		80.0

Site Meets 80% TSS Removal

Mixed-Use Development

B

Water Balance Calculations

Plan of Subdivision

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

Total Volume to be Retained	
Required Water Balance (mm):	5.0
Recall ROW Area (m ²):	6,641
Total Water Balance to be Retained (m ³):	33.2

Volume Achieved Through Initial Abstraction					
Surface	Area (m ²)		I.A.	Vol. (m ³)	
Conventional Roof	0		1	0.0	
Green Roof	0		7	0.0	
Landscape	1,771		5	8.9	
Landscape over P1	0		5	0.0	
Permeable Pavers	0		5	0.0	
Impervious	4,870		1	4.9	
Total Area:	6,641			13.7	

Note: New Municipal Roadway does not meet Water Balance Target

Water Balance Summary for Municipal Roadway	Vol. (m ³)
Total Water Balance to be Retained:	33.2
Total Water Balance Achieved through Initial Abstraction:	13.7
Shortfall to be made up by Development Blocks:	19.5

Water Balance Targets	Vol. (m ³)			
Block B (Building A)	4,046	41.7%	5	20.2
Block D (Building B)	4,002	41.3%	5	20.0
Block E (Building C)	1,652	17.0%	5	8.3
Total Area:	9,700	100%		48.5

Volumetric Adjustmen	Vol. (m ³)			
Block B (Building A)	4,046	41.7%		8.1
Block D (Building B)	4,002	41.3%		8.0
Block E (Building C)	1,652	17.0%		3.3
Total Area:	9,700	100%		19.48

Adjusted Water Baland	Vol. (m ³)		
Block B (Building A)	4,046	7.0	28.4
Block D (Building B)	4,002	7.0	28.0
Block E (Building C)	1,652	7.0	11.6
Total Area:	8,048		68.0

Note: As shown above, each development block will need to achieve a higher water balance target to offset that of the new municipal right-of-way.

Rational Method - 100 Year Storm

Mixed-Use Development

ΙΒΙ

Block B (Building A)

		l _{100-year} =	=	= 250.32 mm/hr
Project Name: Project Number:	3400 Dufferin Street 139570	Weigh	Controlled Area = ed Runoff Coefficient =	0.4046 0.77
Date:	28 July 2022	0	rifice Discharge (L/s) =	26.2
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Volume (m ³
0	0.0	0.000	0.000	0.000
10	250.3	215.897	189.712	113.827
20	143.8	124.001	97.815	117.378
30	103.9	89.650	63.465	114.237
40	82.6	71.220	45.034	108.082
50	69.1	59.576	33.391	100.172
60	59.7	51.490	25.305	91.099
70	52.8	45.517	19.331	81.191
80	47.4	40.905	14.720	70.655
90	43.2	37.227	11.041	59.624
100	39.7	34.217	8.032	48.193
110	36.8	31.705	5.520	36.433
120	34.3	29.573	3.388	24.396
130	32.2	27.739	1.554	12.120
140	30.3	26.142	0.000	0.000
150	28.7	24.739	0.000	0.000
160	27.2	23.494	0.000	0.000
170	25.9	22.381	0.000	0.000
180	24.8	21.381	0.000	0.000
190	23.7	20.476	0.000	0.000
200	22.8	19.653	0.000	0.000
210	21.9	18.900	0.000	0.000
220	21.1	18.210	0.000	0.000
230	20.4	17.574	0.000	0.000
240	19.7	16.986	0.000	0.000
250	19.1	16.440	0.000	0.000
260	18.5	15.932	0.000	0.000
270	17.9	15.458	0.000	0.000
280	17.4	15.015	0.000	0.000
290	16.9	14.599	0.000	0.000
300	16.5	14.209	0.000	0.000
310	16.0	13.841	0.000	0.000
320	15.6	13.494	0.000	0.000
330	15.3	13.165	0.000	0.000
340	14.9	12.855	0.000	0.000
350	14.6	12.560	0.000	0.000
360	14.2	12.280	0.000	0.000

) = <u>117.4</u>) = <u>134.9</u>

Storage Volume Required (cu.m) = Storage Volume Provided (cu.m) =

HGL Depth (m) =

1.8 95

Orifice Diameter (mm) =

Mixed-Use Development

IBI

Water Quality Calculations

Block B (Building A)

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

Surface	Area (m²)		TSS Removal	Overall TSS Removal
Conventional Roof	1,387	34.3%	80	27.4
Green Roof	1,088	26.9%	80	21.5
Landscape	0	0.0%	80	0.0
Landscape over P1	225	5.6%	80	4.4
Permeable Pavers	0	0.0%	80	0.0
Impervious	1,346	33.3%	0	0.0
Total Area:	4,046	100%		53.4

TSS Removal (Un-Treated)

Treatment Required

TSS Removal (Treated)

Surface	Area (m²)		TSS Removal	Overall TSS Removal
0	1,387	34.3%	80	27.4
0	1,088	26.9%	80	21.5
0	0	0.0%	80	0.0
0	225	5.6%	80	4.4
0	0	0.0%	80	0.0
0	1,346	33.3%	80	26.6
Total Area:	4,046	100%		80.0

Site Meets 80% TSS Removal

Mixed-Use Development

B

Г

Water Balance Calculations

Block B (Building A)

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

Total Volume to be Retained	
Required Water Balance (mm):	7.0
Recall Site Area (m ²):	4,046
Total Water Balance to be Retained (m ³):	28.4

to	offset	road)
	to	to offset	to offset road,

Volume Achieved Through Initial Abstraction					
Surface	Area (m ²)	I.A.	Vol. (m ³)		
Conventional Roof	1,387	1	1.4		
Green Roof	1,088	7	7.6		
Landscape	0	5	0.0		
Landscape over P1	225	5	1.1		
Permeable Pavers	0	5	0.0		
Impervious	1,346	1	1.3		
Total Area:	4,046		11.5		

Water Balance Summary	Vol. (m ³)
Recall Initial Abstraction (see above):	11.5
Water Re-Use (Irrigation):	16.9
Water Re-Use (Toilet Flushing):	
Total Water Balance Achieved:	28.4

Site Meets City's Water Balance Criteria

Check Tank Capacity to Capture Re-Use Volume	
Area of SWM Tank (m ²):	95.0
Float Switch Operating Range (m):	0.20
Total Water Balance Achieved:	19.0

SWM Tank has sufficient capacity for Re-Use Volumes

Rational Method - 100 Year Storm

Mixed-Use Development 1

Block D (Building B)

		l _{100-year} =	= <u>59.7</u> (10) ^{0.80}	= 250.32 mm/hr
Project Name:	3400 Dufferin Street		Controlled Area =	0.4002
Project Number:	139570	Weigh	ed Runoff Coefficient =	0.73
Date:	28 July 2022	0	rifice Discharge (L/s) =	23.3
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	Storage Volume (m)
0	0.0	0.000	0.000	0.000
10	250.3	204.042	180.701	108.421
20	143.8	117.191	93.851	112.621
30	103.9	84.727	61.387	110.496
40	82.6	67.309	43.968	105.524
50	69.1	56.305	32.964	98.892
60	59.7	48.663	25.322	91.161
70	52.8	43.017	19.677	82.642
80	47.4	38.659	15.318	73.527
90	43.2	35.182	11.842	63.946
100	39.7	32.338	8.998	53.988
110	36.8	29.964	6.624	43.717
120	34.3	27.950	4.609	33.185
130	32.2	26.216	2.875	22.428
140	30.3	24.707	1.366	11.477
150	28.7	23.380	0.040	0.356
160	27.2	22.204	0.000	0.000
170	25.9	21.152	0.000	0.000
180	24.8	20.207	0.000	0.000
190	23.7	19.352	0.000	0.000
200	22.8	18.574	0.000	0.000
210	21.9	17.863	0.000	0.000
220	21.1	17.210	0.000	0.000
230	20.4	16.609	0.000	0.000
240	19.7	16.053	0.000	0.000
250	19.1	15.537	0.000	0.000
260	18.5	15.057	0.000	0.000
270	17.9	14.609	0.000	0.000
280	17.4	14.190	0.000	0.000
290	16.9	13.798	0.000	0.000
300	16.5	13.428	0.000	0.000
310	16.0	13.081	0.000	0.000
320	15.6	12.753	0.000	0.000
330	15.3	12.443	0.000	0.000
340	14.9	12.149	0.000	0.000
350	14.6	11.870	0.000	0.000
360	14.2	11.606	0.000	0.000

Storage Volume Required (cu.m) = Storage Volume Provided (cu.m) =

112.6 168.4 1.4

HGL Depth (m) = Orifice Diameter (mm) =

95

Mixed-Use Development

IBI

Water Quality Calculations

Block D (Building B)

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

TSS Removal (Un-Treated)

Surface	Area (m²)		TSS Removal	Overall TSS Removal
Conventional Roof	1,399	35.0%	80	28.0
Intensive Green Roof	1,026	25.6%	80	20.5
Landscape	0	0.0%	80	0.0
Landscape over P1	571	14.3%	80	11.4
Permeable Pavers	0	0.0%	80	0.0
Impervious	1,006	25.1%	0	0.0
Total Area:	4,002	100%		59.9

Treatment Required

TSS Removal (Treated)

			TSS	Overall TSS
Surface	Area (m ²)		Removal	Removal
Permeable Pavers	1,399	35.0%	80	28.0
Impervious	1,026	25.6%	80	20.5
Total Area	0	0.0%	80	0.0
0	571	14.3%	80	11.4
Block D (Towers X an	0	0.0%	80	0.0
Conventional Roof	1,006	25.1%	80	20.1
Total Area:	4,002	100%		80.0

Site Meets 80% TSS Removal

٦

Mixed-Use Development

ΙB

Water Balance Calculations

Block D (Building B)

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

Total Volume to be Retained	
Required Water Balance (mm):	7.0
Recall Site Area (m ²):	4,002
Total Water Balance to be Retained (m ³):	28.0

(Adjusted to offset road)

Volume Achieved Through Initial Abstraction					
Surface	Area (m ²)	I.A.	Vol. (m ³)		
Conventional Roof	1,399	1	1.4		
Green Roof	1,026	7	7.2		
Landscape	0	5	0.0		
Landscape over P1	571	5	2.9		
Permeable Pavers	0	5	0.0		
Impervious	1,006	1	1.0		
Total Area:	4,002		12.4		

Water Balance Summary	Vol. (m ³)
Recall Initial Abstraction (see above):	12.4
Water Re-Use (Irrigation):	15.6
Water Re-Use (Toilet Flushing):	
Total Water Balance Achieved:	28.0

DOES NOT WORK

Check Tank Capacity to Capture Re-Use Volume	
Area of SWM Tank (m ²):	87.0
Float Switch Operating Range (m):	0.20
Total Water Balance Achieved:	17.4

SWM Tank has sufficient capacity for Re-Use Volumes

Rational Method - 100 Year Storm

Mixed-Use Development 1

Block E (Building C)

		I _{100-year} :	=	= 250.32 mm/hr
Drois et Neme:	2400 Dufferin Street			0.4650
Project Name: Project Number:	3400 Dufferin Street 139570	Woigh	Controlled Area = ed Runoff Coefficient =	0.1652 0.76
Date:		•		11.3
	28 July 2022		Prifice Discharge (L/s) =	Storage Volume (m ³
Time (min)	Intensity (mm/hr)	Q-100 (L/s)	Q-stored (L/s)	•
0	0.0	0.000	0.000	0.000
10	250.3	87.588	76.255	45.753
20	143.8	50.306	38.974	46.768
30	103.9	36.370	25.038	45.069
40	82.6	28.893	17.561	42.146
50	69.1	24.169	12.837	38.512
60	59.7	20.889	9.557	34.405
70	52.8	18.466	7.134	29.961
80	47.4	16.595	5.263	25.261
90	43.2	15.102	3.770	20.360
100	39.7	13.882	2.550	15.297
110	36.8	12.863	1.530	10.101
120	34.3	11.998	0.666	4.792
130	32.2	11.254	0.000	0.000
140	30.3	10.606	0.000	0.000
150	28.7	10.036	0.000	0.000
160	27.2	9.531	0.000	0.000
170	25.9	9.080	0.000	0.000
180	24.8	8.674	0.000	0.000
190	23.7	8.307	0.000	0.000
200	22.8	7.973	0.000	0.000
210	21.9	7.668	0.000	0.000
220	21.1	7.388	0.000	0.000
230	20.4	7.130	0.000	0.000
240	19.7	6.891	0.000	0.000
250	19.1	6.669	0.000	0.000
260	18.5	6.463	0.000	0.000
270	17.9	6.271	0.000	0.000
280	17.4	6.091	0.000	0.000
290	16.9	5.923	0.000	0.000
300	16.5	5.764	0.000	0.000
310	16.0	5.615	0.000	0.000
320	15.6	5.474	0.000	0.000
330	15.3	5.341	0.000	0.000
340	14.9	5.215	0.000	0.000
350	14.6	5.096	0.000	0.000
360	14.2	4.982	0.000	0.000

Storage Volume Required (cu.m) = Storage Volume Provided (cu.m) =

46.8 105.4 0.9

HGL Depth (m) = Orifice Diameter (mm) =

75

Mixed-Use Development

IBI

Water Quality Calculations

Block E (Building C)

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

TSS Removal (Un-Treated)

Surface	Area (m²)		TSS Removal	Overall TSS Removal
Conventional Roof	672	40.7%	80	32.5
Intensive Green Roof	362	21.9%	80	17.5
Landscape	0	0.0%	80	0.0
Landscape over P1	183	11.1%	80	8.9
Permeable Pavers	0	0.0%	80	0.0
Impervious	435	26.3%	0	0.0
Total Area:	1,652	100%		58.9

Treatment Required

TSS Removal (Treated)

			TSS	Overall TSS
Surface	Area (m ²)		Removal	Removal
Permeable Pavers	672	40.7%	80	32.5
Impervious	362	21.9%	80	17.5
Total Area	0	0.0%	80	0.0
0	183	11.1%	80	8.9
Block D (Towers X an	0	0.0%	80	0.0
Conventional Roof	435	26.3%	80	21.1
Total Area:	1,652	100%		80.0

Site Meets 80% TSS Removal

٦

Mixed-Use Development

IB |

Water Balance Calculations

Block E (Building C)

Project Name: 3400 Dufferin Street Project Number: 139570 Date: 28 July 2022 Designed By: Jason Jenkins, P.Eng.

Total Volume to be Retained	
Required Water Balance (mm):	7.0
Recall Site Area (m ²):	1,652
Total Water Balance to be Retained (m ³):	11.6

(Adjusted to offset road)

Volume Achieved Through Initial Abstraction								
Surface	Area (m ²)	I.A.	Vol. (m ³)					
Conventional Roof	672	1	0.7					
Green Roof	362	7	2.5					
Landscape	0	5	0.0					
Landscape over P1	183	5	0.9					
Permeable Pavers	0	5	0.0					
Impervious	435	1	0.4					
Total Area:	1,652		4.6					

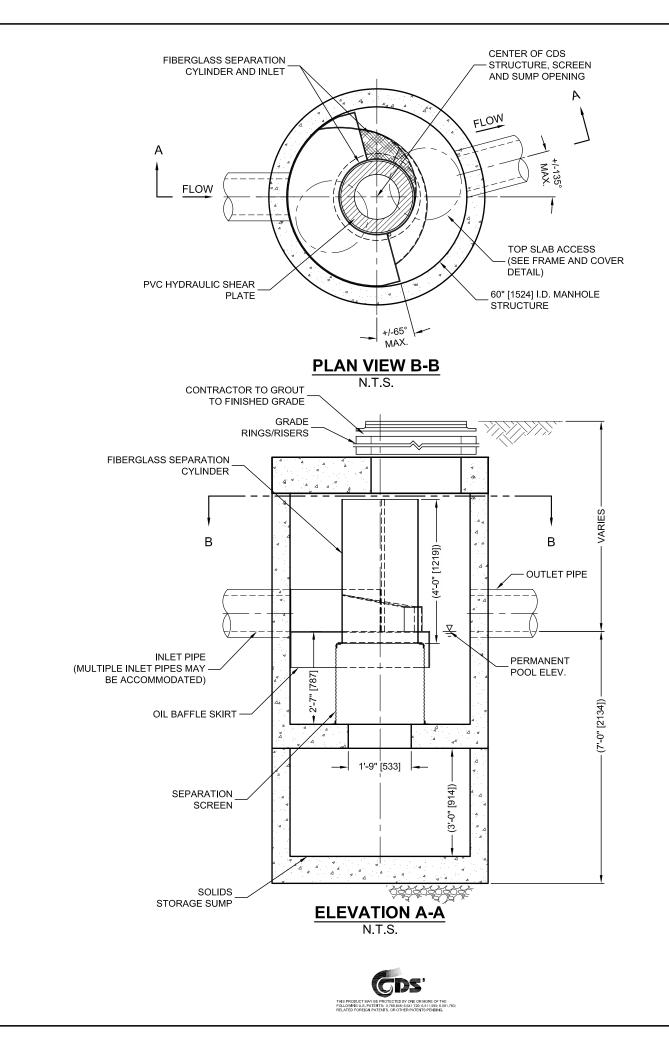
Water Balance Summary	Vol. (m ³)
Recall Initial Abstraction (see above):	4.6
Water Re-Use (Irrigation):	7.0
Water Re-Use (Toilet Flushing):	
Total Water Balance Achieved:	11.6

DOES NOT WORK

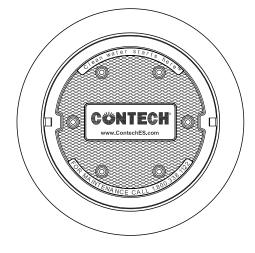
Check Tank Capacity to Capture Re-Use Volume	
Area of SWM Tank (m ²):	53.0
Float Switch Operating Range (m):	0.20
Total Water Balance Achieved:	10.6

SWM Tank has sufficient capacity for Re-Use Volumes

Municipal Right-of-Way



CDS AVERAGE ANNUAL EFFICIENCY FOR TSS REMOVAL & TOTAL ANNUAL VOLUME TREATED



	Location:	3400 Duffer Toronto OGS4 (Mur					IBI Group Shirley Bea 7/Jul/22	udoin		
-	Area: Rc: am Storage: CDS Model:		ha m3		Particle Size	nent Capacity: e Distribution: Rainfall Data:	City of Toror			
Return	Period	Peak Flow	TSS Percentage Captured	Treated Flow Volume	Total Flow Volume	Annual Exceedance Probability	System Flow	CDS Flow	By-Pass Flow	Volume Percentage Treated
month / yr	Yr	l/s	%	litres	litres	%	l/s	l/s	l/s	%
1-M	0.083	2.54	93.20	2116	2116	100.00	2.54	2.54	0.00	100.00
2-M	0.1667	9.46	90.69	7990	7990	99.75	9.46	9.46	0.00	100.00
3-M	0.25	14.99	88.74	12744	12744	98.17	14.99	14.99	0.00	100.00
4-M	0.333	20.00	86.97	17086	17086	95.04	20.00	20.00	0.00	100.00
5-M	0.417	28.14	84.02	24534	24534	90.91	28.14	28.14	0.00	100.00
6-M	0.5	36.28	81.07	31982	31982	86.47	36.28	36.28	0.00	100.00
7-M	0.583	38.42	80.28	33998	34004	82.01	38.42	38.42	0.00	99.98
8-M	0.667	40.57	79.49	36015	36027	77.67	40.57	40.57	0.00	99.97
9-M	0.75	42.71	78.71	38032	38049	73.64	42.71	42.48	0.23	99.95
10-M	0.833	46.71	76.35	40818	41873	69.90	46.71	42.48	4.24	97.86
11-M	0.917	50.71	73.99	43605	45697	66.40	50.71	42.48	8.24	95.77
1-Yr	1	54.72	71.63	46392	49521	63.21	54.72	42.48	12.24	93.68
2-Yr	2	60.90	67.70	49599	55533	39.35	60.90	42.48	18.42	89.32
5-Yr	5	74.27	60.06	55274	68875	18.13	74.27	42.48	31.79	80.25
10-Yr	10	84.46	55.00	58567	79148	9.52	84.46	42.48	41.98	74.00
25-Yr	25	96.50	49.84	61709	91445	3.92	96.50	42.48	54.03	67.48
50-Yr	50	108.88	45.32	64423	104522	1.98	108.88	42.48	66.40	61.64
100-Yr	100	121.90	41.30	66990	118869	1.00	121.90	42.48	79.42	56.36
Average Ann	ual TSS Rer	noval Effic	iency [%]:		80.3	Ave. Ann. T.	Volume [%]	•		97.9
,		•	ducted at the Uni							

2) CDS design flowrate and scaling based on standard manufacturer model & product specificiations

THE STANDARD CDS-5-C CONFIGURATION IS SHOWN.

FRAME AND COVER (DIAMETER VARIES) N.T.S.

- GENERAL NOTES 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.

- SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com
- CAST WITH THE CONTECH LOGO.
- DURING MAINTENANCE CLEANING

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

CDS-5-C DESIGN NOTES

SITE SPECIFIC **DATA REQUIREMENTS**

STRUCTURE ID							
WATER QUALITY	FLOW RAT	Έ(CFS OR L/s)		*		
PEAK FLOW RATE (CFS OR L/s) *							
RETURN PERIOD OF PEAK FLOW (YRS) *							
SCREEN APERTURE (2400 OR 4700) *							
PIPE DATA:	I.E.		MATERIAL	П	AMETER		
	*						
INLET PIPE 1	*		*	*			
INLET PIPE 2	*		*	*			
OUTLET PIPE	*		*	*			
					*		
RIM ELEVATION					*		
ANTI-FLOTATION	BALLAST		WIDTH	Т	HEIGHT		
			*		*		
NOTES/SPECIAL	REQUIREM	EN	TS:				
* PER ENGINEER	OF RECOF	RD					

3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED

4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.

5. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT

ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET HS20 (AASHTO M 306) AND BE

6. IF REQUIRED, PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY

CDS-5-C

ONLINE CDS

STANDARD DETAIL

Determining Number of Cartridges for Flow Based Systems

Date	7/7/2022	Black Cells = Calculation
Site Information		
Project Name	3400 Dufferin St	
Project Location	Toronto, ON	
OGS ID	OGS1 (Block B)	
Drainage Area, Ad	0.14 ac	(0.0569 ha)
Impervious Area, Ai	0.14 ac	
Pervious Area, Ap	0.00	
% Impervious	100%	
Runoff Coefficient, Rc	0.90	
Treatment storm flow rate, Q _{treat}	0.10 cfs	(2.8 L/s)
Peak storm flow rate, Q _{peak}	1.26 cfs	(35.6 L/s)
Filter System		
Filtration brand	StormFilter	
Cartridge height	12 in	
Specific Flow Rate	2.00 gpm/	/ft ²
Flow rate per cartridge	10.00 gpm	
SUMMARY		
Number of Cartridges	5	
Media Type	Perlite	
Event Mean Concentration (EMC)	150 mg/L	
Annual TSS Removal	80%	-
Percent Runoff Capture	90%	

Recommend SFPD0608 vault or CIP

200 Enterprise Drive Scarborough, ME 04074 Phone 877-907-8676 Fax 207-885-9825

STORMFILTER DESIGN NOTES

STORMFILTER TREATMENT CAPACITY VARIES BY CARTRIDGE COUNT AND LOCALLY APPROVED SURFACE AREA SPECIFIC FLOW RATE. PEAK CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD A LEFT INLET (AS SHOWN) OR A RIGHT INLET CONFIGURATION ALL PARTS AND INTERNAL ASSEMBLY PROVIDED BY CONTECH UNLESS NOTED OTHERWISE

- 2'-1" [635] | |

OUTLET

: –)

INLET

INLET BAY

FRAME AND COVER LOCATION

ALTERNATE PIPE LOCATION

OUTLET BAY

GRADE RINGS/RISERS

(TYP OF 3)

SEPARATION

INLET PIPE

WEIR WALL

E

OUTLET PIPE

WALL

Š

FRAME AND COVER (TYP OF 3) TRANSFER

HOLE AND

COVER

 \odot

(8'-0" [2438])

PLAN

ELEVATION

STORMFILTER

CARTRIDGE

The Stormwater Manage

StormFilter

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,322,629; 5,524,576; 5,707,527; 5,985,157; 6,027,639; 6,649,048; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.

STEPS

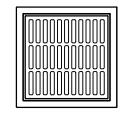
- FLOW KIT

STORMFILTER

CARTRIDGE

 \odot

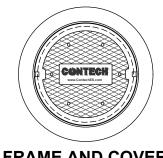
ACTIVATION


FILTRATION BAY

N > / /

DISK

CARTRIDGE SIZE (in. [mm])	27 [686]			18 [457]			LOW DROP			
RECOMMENDED HYDRAULIC DROP (H) (ft. [mm])	3.05 [930]			2.3 [701]			1.8 [549]			
HEIGHT OF WEIR (W) (ft. [mm])		3.00 [914]			2.25 [686]			1.75 [533]		
SPECIFIC FLOW RATE (gpm/sf [L/s/m ²])	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	
CARTRIDGE FLOW RATE (gpm [L/s])	22.5 [1.42]	18.79 [1.19]	11.25 [0.71]	15 [0.95]	12.53 [0.79]	7.5 [0.47]	10 [0.63]	8.35 [0.53]	5 [0.32]	


* 1.67 gpm/sf [1.13 L/s/m²] SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB® (PSORB) MEDIA ONLY

FRAME AND GRATE

(24" SQUARE) (NOT TO SCALE)

FRAME AND COVER

(30" ROUND) (NOT TO SCALE)

PERFORMANCE SPECIFICATION

FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7" [178]. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 37 SECONDS. SPECIFIC FLOW RATE SHALL BE 2 GPM/SF [1.36 L/s/m²] (MAXIMUM). SPECIFIC FLOW RATE IS THE MEASURE OF THE FLOW (GPM) DIVIDED BY THE MEDIA SURFACE CONTACT AREA (SF). MEDIA VOLUMETRIC FLOW RATE SHALL BE 6 GPM/CF [13.39 L/s/m3] OF MEDIA (MAXIMUM).

GENERAL NOTES

INSTALLATION NOTES

SPECIFIED BY ENGINEER OF RECORD.

ENGINEERED SOLUTIONS LLC

www.ContechES.com

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. ALTERNATE DIMENSIONS ARE IN MILLIMETERS [mm] UNLESS NOTED OTHERWISE.
- 4. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH
- REPRESENTATIVE. www.ContechES.com

- SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
- DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 6. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' 10' [3048] AND GROUNDWATER ELEVATION AT, OR

A 6' x 8' [1829 x 2438] PEAK DIVERSION STYLE STORMFILTER IS SHOWN WITH THE MAXIMUM NUMBER OF CARTRIDGES (8) AND IS AVAILABLE IN

SITE SPECIFIC DATA REQUIREMENTS								
STRUCTURE ID								
WATER QUALITY F								
PEAK FLOW RATE								
RETURN PERIOD C								
CARTRIDGE FLOW RATE								
CARTRIDGE SIZE (27, 18, LOW DROP (LD))								
MEDIA TYPE (PERLITE, ZPG, PSORB)								
NUMBER OF CART	RIDGES REC	QUIRED						
INLET BAY RIM ELE	VATION							
FILTER BAY RIM EL	EVATION							
PIPE DATA:	INVERT	MATERIAL	DIAMETER					
INLET PIPE 1								
INLET PIPE 2								
OUTLET PIPE								
NOTES/SPECIAL RI	EQUIREMEN	ITS:						

STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS

BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE. C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL SECTIONS AND ASSEMBLE STRUCTURE. D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH OUTLET PIPE INVERT WITH OUTLET BAY FLOOR. E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF. F. CONTRACTOR TO REMOVE THE TRANSFER OPENING COVER WHEN THE SYSTEM IS BROUGHT ONLINE.

> SFPD0608 (6' x 8') PEAK DIVERSION STORMFILTER STANDARD DETAIL

Determining Number of Cartridges for Flow Based Systems

Recommend SFPD0608 vault or CIP

200 Enterprise Drive Scarborough, ME 04074 Phone 877-907-8676 Fax 207-885-9825

STORMFILTER DESIGN NOTES

STORMFILTER TREATMENT CAPACITY VARIES BY CARTRIDGE COUNT AND LOCALLY APPROVED SURFACE AREA SPECIFIC FLOW RATE. PEAK CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD A LEFT INLET (AS SHOWN) OR A RIGHT INLET CONFIGURATION ALL PARTS AND INTERNAL ASSEMBLY PROVIDED BY CONTECH UNLESS NOTED OTHERWISE

- 2'-1" [635] | |

OUTLET

: –)

INLET

INLET BAY

FRAME AND COVER LOCATION

ALTERNATE PIPE LOCATION

OUTLET BAY

GRADE RINGS/RISERS

(TYP OF 3)

SEPARATION

INLET PIPE

WEIR WALL

E

OUTLET PIPE

WALL

Š

FRAME AND COVER (TYP OF 3) TRANSFER

HOLE AND

COVER

 \odot

(8'-0" [2438])

PLAN

ELEVATION

STORMFILTER

CARTRIDGE

The Stormwater Manage

StormFilter

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,322,629; 5,524,576; 5,707,527; 5,985,157; 6,027,639; 6,649,048; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.

STEPS

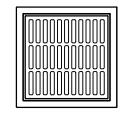
- FLOW KIT

STORMFILTER

CARTRIDGE

 \odot

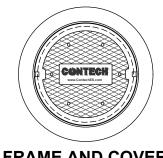
ACTIVATION


FILTRATION BAY

N > / /

DISK

CARTRIDGE SIZE (in. [mm])	27 [686]			18 [457]			LOW DROP			
RECOMMENDED HYDRAULIC DROP (H) (ft. [mm])	3.05 [930]			2.3 [701]			1.8 [549]			
HEIGHT OF WEIR (W) (ft. [mm])		3.00 [914]			2.25 [686]			1.75 [533]		
SPECIFIC FLOW RATE (gpm/sf [L/s/m ²])	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	
CARTRIDGE FLOW RATE (gpm [L/s])	22.5 [1.42]	18.79 [1.19]	11.25 [0.71]	15 [0.95]	12.53 [0.79]	7.5 [0.47]	10 [0.63]	8.35 [0.53]	5 [0.32]	


* 1.67 gpm/sf [1.13 L/s/m²] SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB® (PSORB) MEDIA ONLY

FRAME AND GRATE

(24" SQUARE) (NOT TO SCALE)

FRAME AND COVER

(30" ROUND) (NOT TO SCALE)

PERFORMANCE SPECIFICATION

FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7" [178]. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 37 SECONDS. SPECIFIC FLOW RATE SHALL BE 2 GPM/SF [1.36 L/s/m²] (MAXIMUM). SPECIFIC FLOW RATE IS THE MEASURE OF THE FLOW (GPM) DIVIDED BY THE MEDIA SURFACE CONTACT AREA (SF). MEDIA VOLUMETRIC FLOW RATE SHALL BE 6 GPM/CF [13.39 L/s/m3] OF MEDIA (MAXIMUM).

GENERAL NOTES

INSTALLATION NOTES

SPECIFIED BY ENGINEER OF RECORD.

ENGINEERED SOLUTIONS LLC

www.ContechES.com

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. ALTERNATE DIMENSIONS ARE IN MILLIMETERS [mm] UNLESS NOTED OTHERWISE.
- 4. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH
- REPRESENTATIVE. www.ContechES.com

- SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
- DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 6. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' 10' [3048] AND GROUNDWATER ELEVATION AT, OR

A 6' x 8' [1829 x 2438] PEAK DIVERSION STYLE STORMFILTER IS SHOWN WITH THE MAXIMUM NUMBER OF CARTRIDGES (8) AND IS AVAILABLE IN

SITE SPECIFIC DATA REQUIREMENTS					
STRUCTURE ID					
WATER QUALITY F	QUALITY FLOW RATE (cfs [L/s])				
PEAK FLOW RATE (cfs [L/s])					
RETURN PERIOD C	TURN PERIOD OF PEAK FLOW (yrs)				
CARTRIDGE FLOW RATE					
CARTRIDGE SIZE (27, 18, LOW DROP (LD))					
MEDIA TYPE (PERLITE, ZPG, PSORB)					
NUMBER OF CARTRIDGES REQUIRED					
INLET BAY RIM ELEVATION					
FILTER BAY RIM EL	R BAY RIM ELEVATION				
PIPE DATA:	INVERT	MATERIAL	DIAMETER		
INLET PIPE 1					
INLET PIPE 2					
OUTLET PIPE					
NOTES/SPECIAL REQUIREMENTS:					

STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS

BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE. C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL SECTIONS AND ASSEMBLE STRUCTURE. D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH OUTLET PIPE INVERT WITH OUTLET BAY FLOOR. E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF. F. CONTRACTOR TO REMOVE THE TRANSFER OPENING COVER WHEN THE SYSTEM IS BROUGHT ONLINE.

> SFPD0608 (6' x 8') PEAK DIVERSION STORMFILTER STANDARD DETAIL

Determining Number of Cartridges for Flow Based Systems

Date	7/7/2022	Black Cells = Calculation
Site Information		
Project Name	3400 Dufferin St	
Project Location	Toronto, ON	
OGS ID	OGS3 (Block E)	
Drainage Area, Ad	0.06 ac	(0.0234 ha)
Impervious Area, Ai	0.06 ac	
Pervious Area, Ap	0.00	
% Impervious	100%	
Runoff Coefficient, Rc	0.90	
Treatment storm flow rate, Q _{treat}	0.04 cfs	(1.2 L/s)
Peak storm flow rate, Q _{peak}	0.52 cfs	(14.6 L/s)
Filter System		
Filtration brand	StormFilter	
Cartridge height	12 in	
Specific Flow Rate	2.00 gpm	n/ft [∠]
Flow rate per cartridge	10.00 gpm	1
SUMMARY		
Number of Cartridges	2	
Media Type	Perlite	
Event Mean Concentration (EMC)	150 mg/	I
Annual TSS Removal	80%	-
Percent Runoff Capture	90%	

Recommend SFPD0608 vault or CIP

200 Enterprise Drive Scarborough, ME 04074 Phone 877-907-8676 Fax 207-885-9825

STORMFILTER DESIGN NOTES

STORMFILTER TREATMENT CAPACITY VARIES BY CARTRIDGE COUNT AND LOCALLY APPROVED SURFACE AREA SPECIFIC FLOW RATE. PEAK CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD A LEFT INLET (AS SHOWN) OR A RIGHT INLET CONFIGURATION ALL PARTS AND INTERNAL ASSEMBLY PROVIDED BY CONTECH UNLESS NOTED OTHERWISE

- 2'-1" [635] | |

OUTLET

: –)

INLET

INLET BAY

FRAME AND COVER LOCATION

ALTERNATE PIPE LOCATION

OUTLET BAY

GRADE RINGS/RISERS

(TYP OF 3)

SEPARATION

INLET PIPE

WEIR WALL

E

OUTLET PIPE

WALL

Š

FRAME AND COVER (TYP OF 3) TRANSFER

HOLE AND

COVER

 \odot

(8'-0" [2438])

PLAN

ELEVATION

STORMFILTER

CARTRIDGE

The Stormwater Manage

StormFilter

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,322,629; 5,524,576; 5,707,527; 5,985,157; 6,027,639; 6,649,048; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.

STEPS

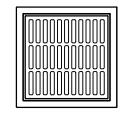
- FLOW KIT

STORMFILTER

CARTRIDGE

 \odot

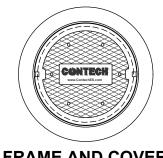
ACTIVATION


FILTRATION BAY

N > / /

DISK

CARTRIDGE SIZE (in. [mm])		27 [686]			18 [457]			LOW DROP	
RECOMMENDED HYDRAULIC DROP (H) (ft. [mm])		3.05 [930]			2.3 [701]			1.8 [549]	
HEIGHT OF WEIR (W) (ft. [mm])		3.00 [914]			2.25 [686]			1.75 [533]	
SPECIFIC FLOW RATE (gpm/sf [L/s/m ²])	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]
CARTRIDGE FLOW RATE (gpm [L/s])	22.5 [1.42]	18.79 [1.19]	11.25 [0.71]	15 [0.95]	12.53 [0.79]	7.5 [0.47]	10 [0.63]	8.35 [0.53]	5 [0.32]


* 1.67 gpm/sf [1.13 L/s/m²] SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB® (PSORB) MEDIA ONLY

FRAME AND GRATE

(24" SQUARE) (NOT TO SCALE)

FRAME AND COVER

(30" ROUND) (NOT TO SCALE)

PERFORMANCE SPECIFICATION

FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7" [178]. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 37 SECONDS. SPECIFIC FLOW RATE SHALL BE 2 GPM/SF [1.36 L/s/m²] (MAXIMUM). SPECIFIC FLOW RATE IS THE MEASURE OF THE FLOW (GPM) DIVIDED BY THE MEDIA SURFACE CONTACT AREA (SF). MEDIA VOLUMETRIC FLOW RATE SHALL BE 6 GPM/CF [13.39 L/s/m3] OF MEDIA (MAXIMUM).

GENERAL NOTES

INSTALLATION NOTES

SPECIFIED BY ENGINEER OF RECORD.

ENGINEERED SOLUTIONS LLC

www.ContechES.com

9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069 800-338-1122 513-645-7000 513-645-7993 FAX

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. ALTERNATE DIMENSIONS ARE IN MILLIMETERS [mm] UNLESS NOTED OTHERWISE.
- 4. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH
- REPRESENTATIVE. www.ContechES.com

- SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.
- DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- 6. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' 10' [3048] AND GROUNDWATER ELEVATION AT, OR

A 6' x 8' [1829 x 2438] PEAK DIVERSION STYLE STORMFILTER IS SHOWN WITH THE MAXIMUM NUMBER OF CARTRIDGES (8) AND IS AVAILABLE IN

SITE SPECIFIC DATA REQUIREMENTS					
STRUCTURE ID					
WATER QUALITY F	QUALITY FLOW RATE (cfs [L/s])				
PEAK FLOW RATE (cfs [L/s])					
RETURN PERIOD C	TURN PERIOD OF PEAK FLOW (yrs)				
CARTRIDGE FLOW RATE					
CARTRIDGE SIZE (27, 18, LOW DROP (LD))					
MEDIA TYPE (PERLITE, ZPG, PSORB)					
NUMBER OF CARTRIDGES REQUIRED					
INLET BAY RIM ELEVATION					
FILTER BAY RIM EL	R BAY RIM ELEVATION				
PIPE DATA:	INVERT	MATERIAL	DIAMETER		
INLET PIPE 1					
INLET PIPE 2					
OUTLET PIPE					
NOTES/SPECIAL REQUIREMENTS:					

STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS

BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS

A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE. C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL SECTIONS AND ASSEMBLE STRUCTURE. D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH OUTLET PIPE INVERT WITH OUTLET BAY FLOOR. E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF. F. CONTRACTOR TO REMOVE THE TRANSFER OPENING COVER WHEN THE SYSTEM IS BROUGHT ONLINE.

> SFPD0608 (6' x 8') PEAK DIVERSION STORMFILTER STANDARD DETAIL

Appendix C Engineering Drawings

Site Plan Application Set Draft Plan of Subdivision Set