Hydrogeological Investigation

Proposed Residential Buildings 3400 Dufferin Street and 8 Jane Osler Boulevard Toronto, ON

Prepared For:

Dufferin-401 Properties Limited

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Project No.: 22-217-100 **Date:** July 22, 2022

22-217-100

July 22, 2022

ii

Attn: Robert Stein, President Dufferin-401 Properties Limited 9144 Yonge Street, 1700 Richmond Hill, ON

Via email: fv@collecdev.com

RE: Hydrogeological Investigation – 3400 Dufferin Street and 8 Jane Osler Boulevard, Toronto, ON

DS Consultants Limited (DS) was retained by Dufferin-401 Properties Limited to complete a hydrogeological investigation for the proposed development located at 3400 Dufferin Street and 8 Jane Osler Boulevard in Toronto (Site). The Site is an approximate 16,700 m² (4.12 Acre) parcel of land situated southwest of Highway 401 and Dufferin Street and is currently occupied by Honda dealership. It is understood that the new development consists of building two (2) twenty-nine (29) storey buildings (Building A and B) and a ten (10) storey building (Building C) with separated two (2) levels of underground parking (P2).

The average ground elevation at the site is at about 190.13 meters above sea level (masl). Based on the architectural drawings, the finished floor elevation of P2 for the proposed development is at 8 meters below the existing ground surface (mbgs). The assumed maximum excavation depth of P2 considering the footings and elevator shaft would be approximately 10 mbgs or elevation 180.13 masl.

This hydrogeological investigation includes an overview of the existing geological and hydrogeological conditions at the Site and the surrounding area, an assessment of the hydrogeological constraints, impacts of the proposed development on the local groundwater, and provides an estimation of construction dewatering and permanent drainage requirements during the proposed development phase.

The hydrogeological investigation report has been prepared in general accordance with the Ontario Water Resource Act (OWRA), the Ontario Water Taking Regulation (O.Reg.387/04), and the City of Toronto Sewers By-law (Toronto Municipal Code, Chapter 681, Sewers). If needed, the results of this investigation can be used in support of an application for a Category 3 Permit to Take Water (PTTW) or an Environmental Activity Sector Registry (EASR) for construction dewatering from the Ministry of the Environment Conservation and Parks (MECP). The hydrogeological report may also be used to support Site Plan Approvals (SPA) and discharge permitting (short and long term) from the City of Toronto. Based on the results of this investigation, the following conclusions and recommendations are presented:

 As part of the hydrogeological investigation, DS completed a search of the MECP water well records (WWRs) database. Based on the MECP WWR search, there are eighty-five (85) water wells within 500 meters of the site. All wells were noted as monitoring well or unknown. There are no groundwater users expected within the study area, and therefore no impacts to water supply wells are anticipated.

- 2. Between June 14 to 22, 2022, DS drilled five (5) boreholes (BH22-1 through BH22-5) and equipped all drilled boreholes with monitoring wells at the site as part of the concurrent geotechnical, hydrogeological and environmental investigations. The boreholes were advanced to a depth ranging from 18.4 to 30.8 mbgs. Monitoring wells were screened to depths ranging from 1.6 to 19.8 mbgs.
- 3. The surficial geology at the site is characterized as Till deposits and consist of stone-poor sandy silt to silty sand-textured till on Paleozoic terrain deposits. The overburden geology at the site generally consisted of silty clay to clayey silt (Till) deposits, sandy silt, upper sand, lower silt, clayey silt and lower sand to silty sand.
- 4. Groundwater levels were measured in all available wells on July 6th, 2022, by DS staff. The shallow groundwater levels ranged from 1.7 to 5.5 mbgs or elevation 184.61 to 188.5 masl and the deep groundwater level found at the depth of 10.41 mbgs or elevation 180.09 masl. The flow direction in the study area is inferred to be westerly towards Black Creek which ultimately discharges into Lake Ontario.
- 5. A total of five (5) Single Well Response Tests (slug tests) were completed by DS on July 6th, 2022, to estimate hydraulic conductivity (k) for the representative geological units in which the wells were screened. Hydraulic conductivity (k) values were calculated using the Hvorslev method using the AquiferTest[®] Software. The k-values ranged between 9.98 x 10⁻⁹ to 1.03 x 10⁻⁶ m/s.
- 6. To assess the suitability for discharge of groundwater to the City of Toronto's Sanitary/Storm Sewers, one (1) unfiltered groundwater sample was collected from monitoring well BH22-5. The reported analytical results indicated that no parameters were in exceedance of the Toronto's Storm Sewer Discharge By-Law criteria except Total Suspended Solid (TSS), Manganese and Chloroform. All parameters met the City's Sanitary Sewer Discharge By-Law criteria except for TSS. Therefore, water cannot be discharged to the City's storm and sanitary sewers without treatment. Treatment should comply with the water quality limits set in Table 1 for sanitary and combined sewers and Table 2 for storm sewers before any discharge.
- 7. The total estimated daily dewatering rate of short-term construction dewatering for the proposed development would be 61,600 L/day (61.6 m³/day) for Building A, 61,900 L/day (61.9 m³/day) for Building B and 32,600 L/day (32.6 m³/day) for Building C. This estimated value incorporates a safety factor of x2 and a theoretical 10 mm storm event into the open excavation during construction.
- 8. Following the construction of the underground structure, long-term groundwater flow to the underfloor drainage system for the building will be a function of the upward flux and drainage along the foundation wall. Based on the assumed design, depth to water and given k-value, the estimated permanent theoretical flow would expect to be less than 1,000 L/day (1 m³/day) for each building. For design purposes, it can be assumed that a maximum of 5,000 L/day (5 m³/day) will be needed to be pumped into the sewer system to manage any unforeseen groundwater issues in the future. The City of Toronto's foundation drainage policy and guidelines effective as of January 1, 2022, should be considered during the design for on-site management of foundation drainage or permanent

drainage in future. As mentioned in the policy, on-site management options for foundation drains/permanent drainage may include but are not limited to, waterproofing the buildings, modifying building design to avoid intersection with the maximum anticipated groundwater level, and/or above-ground discharge and infiltration from sump pumps.

- 9. Since the expected design dewatering rate for the unsealed excavation for building A and B is between the MECP water taking limit of 50,000 and 400,000 L/day, an EASR application is required to be submitted to the MECP for short-term dewatering prior to construction. For Building C, since the expected dewatering rate is below the MECP water taking limit of 50,000 L/day, an EASR is not required to be submitted to the MECP for short-term dewatering. Based on current groundwater conditions, permanent groundwater flow or permanent drainage is expected to be less than the water-taking limit of 50,000 L/day. Therefore, a PTTW is not required on a permanent basis.
- 10. Once a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts as a result of dewatering.
- 11. A groundwater level monitoring program has been implemented at the Site on a bi-weekly basis for three (3) months to document the pre-construction groundwater conditions and assess seasonal groundwater fluctuations. To meet the City of Toronto's requirements, the monitoring program includes all monitoring wells and a total of six (6) water level measurements.
- 12. There are structures and utilities within the maximum predicted zone of influence (ZOI) about 43 meters for Building A and B and 31 meters for Building C when considering an unsealed excavation. Since the proposed construction is anticipated to be constructed within the low permeable sandy silt to clayey silt till deposits, an effect of settlement due to dewatering would be negligible within the predicted zone of influence.
- 13. In conformance with Regulation 903 of the Ontario Water Resources Act, the decommissioning of any dewatering system and monitoring wells should be carried out by a licensed contractor under the supervision of a licensed water well technician.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Meysam Jafari, M.Sc., P.Geo. Project Manager

Reviewed By:

Monti- Cal

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

Table of Contents

1.0	INTRO	DUCTION1
	1.1	Purpose1
	1.2	Scope of Work
2.0	FIELDV	VORK
3.0	PHYSIC	CAL SETTING2
	3.1 Pł	nysiography and Drainage2
	3.2	Geology2
	3.2.1	Quaternary Geology3
	3.2.2	Bedrock Geology3
	3.2.3	Site Geology3
	3.3	Hydrogeology4
	3.3.1	Local Groundwater Use
	3.3.2	Groundwater Conditions
	3.3.3	Hydraulic Conductivity5
	3.3.4	Groundwater Quality5
4.0	CONST	RUCTION DEWATERING6
	4.1	Estimation of Flow Rate - Unsealed Excavation
	4.2	Estimation of Flow Rate- Storm Water Consideration7
	4.3	Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)7
	4.4	Permanent Drainage (Long-term Discharge)7
	4.5	Permit Requirements
	4.5.1	Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW)
		Application
	4.5.2	Discharge Permits (Construction Dewatering)
5.0	POTEN	NTIAL IMPACTS8
	5.1	Local Groundwater Use
	5.2	Point of Discharge and Groundwater Quality8
	5.3	Settlement Due to Dewatering Activities
	5.4	Well Decommissioning9
6.0	ΜΟΝΙΤ	FORING AND MITIGATION9
7.0	CONS	ULTANT QUALIFICATIONS
8.0	REFER	ENCES11

FIGURES

- Figure 1 Development Site Location and MECP Water Well Record Map
- Figure 2 Surficial Geology Map
- Figure 3 Borehole and Monitoring Well Location Plan
- Figure 4 Geological Cross-Section A-A'

APPENDICES:

- Appendix A Borehole Logs
- Appendix B Hydraulic Conductivity Analysis
- Appendix C Groundwater Quality Certificate of Analysis
- Appendix D MECP Water Wells Records

1.0 INTRODUCTION

DS Consultants Limited (DS) was retained by Dufferin-401 Properties Limited to complete a hydrogeological investigation for the proposed development located at 3400 Dufferin Street and 8 Jane Osler Boulevard in Toronto (Site). The Site is an approximate 16,700 m² (4.12 Acre) parcel of land situated southwest of Highway 401 and Dufferin Street and is currently occupied by Honda dealership. It is understood that the new development consists of building two (2) twenty-nine (29) storey buildings (Building A and B) and a ten (10) storey building (Building C) with separated two (2) levels of underground parking (P2). **Figure 1** presents the site location map that highlights the location of the site and the surrounding area.

The average ground elevation at the site is at about 190.13 meters above sea level (masl). Based on the architectural drawings the finished floor elevation of P2 for the proposed development is at 8 meters below the existing ground surface (mbgs). The assumed finished floor elevation of P2 considering the footings and elevator shaft would be approximately 10 mbgs or elevation 180.13 masl.

1.1 Purpose

The purpose of this Hydrogeological Investigation is to assess the current groundwater conditions at the Site in order to evaluate the following:

- Temporary construction dewatering for the excavations of the proposed building on Site;
- Explore the potential need for a Permit to Take Water (PTTW) or Environmental Activity and Sector Registration (EASR) for the purposes of Construction Dewatering from the MECP;
- Temporary management and discharge of groundwater during short term construction dewatering
- Asses permanent drainage requirements; and
- Assess groundwater quality to identify potential adverse impacts to Toronto Region's sewer system.

1.2 Scope of Work

The scope of work for this investigation included:

- Site visits;
- Desktop review of pertinent geological and hydrogeological resources;
- Review the MECP Water Well Records and water use in the surrounding area;
- Field work drilling program including installation of five (5) monitoring wells;

- Conducting single well response tests (slug tests) to determine hydraulic conductivity values across the site;
- Characterize the stratigraphy and measure the ground water levels across the site;
- Collection and analysis of groundwater samples in order to quantify and characterize any possible contaminants that may impact future discharge applications;
- Estimation of construction dewatering volumes, which is to be used to predict the short-term groundwater control requirements for the construction of the proposed building on site.

2.0 FIELDWORK

Between June 14 to 22, 2022, DS drilled five (5) boreholes (BH22-1 through BH22-5) and equipped all drilled boreholes with monitoring wells at the site as part of the concurrent geotechnical, hydrogeological and environmental investigations. The boreholes were advanced to a depth ranging from 18.4 to 30.8 mbgs. Monitoring wells were screened to depths ranging from 1.6 to 19.8 mbgs. All wells were completed with 50 mm diameter PVC pipes with 3.05 m well screens and were installed using above ground mounted protective casings. All monitoring wells were developed before any use to allow for groundwater level monitoring, hydraulic conductivity testing, and to assess groundwater quality. A total of five (5) single well response tests (SWRTs) were completed by performing a rising head test (slug test) to estimate hydraulic conductivity values of soils at the site. One (1) unfiltered groundwater sample was also collected and analyzed for the parameters listed under the City of Toronto Sewers By-law (Toronto Municipal Code, Chapter 681, Sewers) to assess groundwater quality. The borehole (BH) and monitoring well (MW) location plan is shown in **Figure 3**.

3.0 PHYSICAL SETTING

Available topographic maps, environmental, geotechnical, and hydrogeological reports were used to develop an understanding of the physical setting of the study area. Borehole logs and the MECP WWRs were used to interpret the geological and hydrogeological conditions at the development site.

3.1 Physiography and Drainage

The topography at the Site is relatively flat with a surface elevation of approximately 190.13 metres above sea level (masl). The nearest surface water body to the Site is Black Creek, located about 4.1 km to the west of the Site, which ultimately drains into Lake Ontario. Drainage in the study area is generally controlled by streams, artificial channels, and the local topography.

3.2 Geology

The following presents a brief description of regional and development site geology based on the review of available information and development site-specific soil investigations.

3.2.1 Quaternary Geology

According to the Ontario Geological Survey mapping across the region, the site lies within the Bevelled Till Plains physiographic region of southern Ontario and quaternary geology of the Site is characterized by silt to silty clay matrix deposits consist of high carbonate content and clast poor deposits of Pleistocene. The surficial geology at the site is characterized as Till deposits and consist of stone-poor sandy silt to silty sand-textured till on Paleozoic terrain deposits. The surficial geology map is shown in **Figure 2**.

3.2.2 Bedrock Geology

According to the Ontario Geological Survey mapping across the region the bedrock at the site is predominantly comprised of shale, limestone, dolostone, siltstone of the Georgian Bay formation; Blue Mountain formation; Billings formation; Collingwood Member, and Eastview Member. Bedrock was not encountered during the current investigation. Based on the MECP WWRs investigation in the study area, the bedrock is expected to be at the depth more than 30 mbgs.

3.2.3 Site Geology

On-site subsurface soil conditions were summarized from the boreholes advanced by DS for the current investigation. Detailed subsurface conditions are presented in **Figure 4**, and the borehole logs are presented in **Appendix A**. The subsurface conditions in the boreholes are summarized in the following paragraphs.

Asphaltic Concrete and Granular Material: Asphaltic concrete pavement was encountered surficially in all boreholes. The thickness of the asphaltic concrete ranged from about 75 to 130 mm. Granular material consisting of sand and gravel was encountered below asphaltic concrete in all boreholes, and the thickness of granular material ranged from about 230 to 300 mm.

Fill Material: Fill materials consisting of silty clay to clayey silt with trace to some organics and trace gravel were encountered below the pavement structure in all boreholes. The fill material extended to depths of approximately 1.6 to 2.3 mbgs.

Silty Clay to Clayey Silt (Till): Below the fill material, silty clay to clayey silt glacial (till) deposits were encountered in all boreholes and extended to depths ranging from 12.2 to 16.8 mbgs. At BH22-1, a thin wet deposit of silt with trace clay, trace to some sand and trace gravel interrupts the silty clay to clayey silt till between 12.2 and 13.7 m depth below existing grade.

Sandy Silt (Till): A sandy silt glacial (till) deposit was encountered at below the silty clay to clayey silt till at varying depths in all boreholes and extended to depths ranging from 18.0 to 19.9 mbgs, i.e., depth of investigation in BH22-2, BH22-3, and BH22-5. A very thin (approx. 400 mm thick) layer of silty clay till was encountered below the sandy silt till in BH22-4 and extended to the depth of investigation, i.e., depth of 18.4 mbgs.

Upper Sand: Underlying the sandy silt till in BH22-1, a cohesionless sand deposit with some silt, trace clay and trace gravel was encountered and extended to a depth of 19.8 mbgs.

Lower Silt: Underlying the cohesionless deposit in BH22-1, a silt deposit with some clay, trace sand and trace gravel was encountered and extended to a depth of 22.9 mbgs.

Clayey Silt: A cohesive clayey silt deposit with trace to some sand, silt seams and trace gravel was encountered below the silt in BH22-1 and extended to a depth of 25.9 mbgs.

Lower Sand to Silty Sand: A lower cohesionless deposit of sand to silty sand with inclusions of clay and gravel was encountered below the clayey silt in BH22-1 and extended to the depth of investigation, i.e., depth of 30.8 mbgs.

3.3 Hydrogeology

The hydrogeology at the site was evaluated using the on-site monitoring wells installed by DS, and the MECP WWRs in the study area.

3.3.1 Local Groundwater Use

As part of the hydrogeological investigation, DS completed a search of the MECP water well records (WWRs) database. Based on the MECP WWR search, there are eighty-five (85) water wells within 500 meters of the site (**Appendix D**). All wells were noted as monitoring well, or unknown. **Figure 1** shows the MECP water well location plan. There are no groundwater users expected within the study area, and therefore no impacts to water supply wells are anticipated.

3.3.2 Groundwater Conditions

Groundwater levels were measured in all available wells on July 6th, 2022, by DS staff. **Table 3-1** presents the groundwater levels in all monitoring wells. The shallow groundwater levels ranged from 1.7 to 5.5 mbgs (Elev: 184.61 to 188.5 masl) and the deep groundwater level found at the depth of 10.41 mbgs or elevation 180.09 masl. The flow direction in the study area is inferred to be westerly towards Black Creek which ultimately discharges into Lake Ontario.

Well ID	Ground Elevation (masl)	Screened Interval (mbgs)	Depth to Water (mbgs)	Groundwater Elevation (masl)
BH22-1	190.50	16.8-19.8	10.41	180.09
BH22-2	190.20	12.3-15.3	1.70	188.50
BH22-3	190.20	1.7-4.7	1.30	188.90
BH22-4	189.68	1.5-4.5	2.40	187.28
BH22-5	190.11	6.2-9.2	5.50	184.61

Table 3-1: Groundwater Levels in Monitoring Well
--

3.3.3 Hydraulic Conductivity

A total of five (5) Single Well Response Tests (slug tests) were completed by DS on July 6, 2022 to estimate hydraulic conductivity (k) for the representative geological units in which the wells were screened. SWRTs were completed by performing a rising head test (slug test) with the use of Waterra[®] tubing to 'instantaneously' remove water from the well. A data logger was placed at the bottom of the wells to accurately measure the change in the hydraulic head versus time. Hydraulic conductivity (k) values were calculated using the Hvorslev method using the AquiferTest[®] Software. The semi-log plots for normalized drawdown versus time are provided in **Appendix B.** The k-values ranged between 9.98 x 10⁻⁹ to 1.03 x 10⁻⁶ m/s. **Table 3-2** presents the Hydraulic Conductivity (k) values for the representative geological units.

Well ID	Screened Interval (mbgs)	Screened Formation	K-value (m/s)	Geomean value
BH22-1	16.8-19.8	sandy silt/sand	1.35 x 10 ⁻⁸	
BH22-2	12.3-15.3	silty clay/clayey silt	1.03 x 10 ⁻⁶	
BH22-3	1.7-4.7	Silty clay till	6.05 x 10 ⁻⁸	5.82 x 10 ⁻⁸
BH22-4	1.5-4.5	Silty clay till	9.98 x 10 ⁻⁹	
BH22-5	6.2-9.2	silty clay/clayey silt	7.94 x 10 ⁻⁸	

Table 3-2. Summar	of H	vdraulic	Conductivity	111	Tost Rosults
Table 5-2: Summar		yuraulic	Conductivity	y (K)	rest results

3.3.4 Groundwater Quality

To assess the suitability for discharge of groundwater to the City of Toronto's Sanitary/Storm Sewers, one (1) unfiltered groundwater sample was collected from monitoring well BH22-5 on July 6th, 2022. The samples were placed in pre-cleaned laboratory supplied vials and/or bottles provided with analytical test group-specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted to SGS Laboratories in Mississauga, Ontario. SGS is certified by the Canadian Association of Laboratory Accreditation Inc. (CALA) and the Canadian Standard Association (CSA). The analytical results were compared to the City of Toronto's Table 1 Limits for Sanitary and Combined Sewer Discharge, and Table 2 Limits for Storm Sewer Discharge. The reported analytical results indicated that no parameters were in exceedance of the Toronto's Storm Sewer Discharge By-Law criteria except for TSS. Therefore, water cannot be discharged to the City's storm and sanitary sewers without treatment. Treatment is needed to comply with the water quality limits set in Table 1 for sanitary and combined sewers and Table 2 for storm sewers before any discharge. **Table 3-3** presents a summary of the exceeded parameters, and the certificates of analyses are provided in **Appendix D**.

Parameter	Unit	Toronto Sanitary By-Law Criteria	Toronto Storm By- Law Criteria	BH22-5
Total Suspended Solid (TSS)	mg/L	350	15	<u>431</u>
Manganese	mg/L	5	0.05	<u>0.223</u>
Chloroform	mg/L	0.04	0.002	<u>0.0026</u>
Bold- Exceeds Sanitary Sewer L	Jse by Law Criteria			

Table 3-3: Parameters in Groundwater Exceeding City of Toronto Sewer Use By-law 100-2016

4.0 CONSTRUCTION DEWATERING

The proposed residential development will include the construction of two (2) twenty-nine (29) storey buildings (Building A and B) and a ten (10) storey building (Building C) with separated two (2) levels of underground parking (P2). Based on the architectural drawings the finished floor elevation of P2 for the proposed development is at 8 meters below the existing ground surface (mbgs). The assumed finished floor elevation of P2 considering the footing and elevator shaft would be approximately 10 mbgs or elevation 180.13 masl. For construction dewatering purposes, the groundwater level should be lowered at least one (1) m below the footings and elevator shaft elevation at about 179.13 masl. The unsealed construction excavation method for each separated block (Building) with excavation dimensions of 70 m long and 58 m wide for Building A, 74 m long and 55 m wide for Building B and 58 m long and 31 m wide for building C were considered for the proposed development. Since the proposed underground structure will be below the groundwater table, dewatering will be required during the excavation of overburden material.

4.1 Estimation of Flow Rate - Unsealed Excavation

This section calculates the estimated dewatering required during the construction of the proposed building based on the geomean k-value, the highest groundwater elevations at the site using the steady-state flow equation for unsealed excavation as follows. The estimated flow rates for the proposed buildings are summarised in Table 4-1.

$$Q_R = K x \frac{H^2 - h^2}{0.733} x \log (R_0/r_e)$$
$$r_e = \left(\frac{(a \ x \ b)}{\pi}\right)^{0.5}$$

$$R_0 = (r_e + 3000)(H - h)(k^{0.5})$$

Table: 4-1 Estimation of Flow Rate (Short-term Discharge) - Unsealed Excavation

Paramotors	Building A	Building B	Building C
Falanieleis	P2 Level	P2 Level	P2 Level
K -Hydraulic conductivity(geomean) (m/s)	5.82 x 10 ⁻⁸	5.82 x 10 ⁻⁸	5.82 x 10 ⁻⁸
H-Distance from water level to the bottom of an aquifer (m)	11.22	11.22	11.22
h -Depth of water in the well while pumping (m)	1	1	1
a- length of excavation (m)	70	74	58
b- Width of excavation (m)	58	55	31
$r_{e}\mbox{-}equivalent$ radius, where a and b excavation dimensions (m)	36	36	24
R _o - Radius of the cone of depression	43	43	31
Estimated Flow Rate- L/day (without safety factor)	10,500	10,600	7,300

4.2 Estimation of Flow Rate- Storm Water Consideration

During construction, additional removal of stormwater from precipitation into the open excavation will be required. The estimated flow rate is based on the excavation dimensions for the phase of development and a theoretical 10 mm precipitation event in 24 hours. The total estimated dewatering that might be needed as a result of a 10 mm precipitation event for would be approximately 40,600 L/day for building A, 40,700 L/day for Building B and 18,000 L/day for Building C.

4.3 Total Estimation of Flow Rate (Short-Term/ Temporary Discharge)

Considering the unsealed excavation method, the recommended pumping rate for building A, would be approximately 61,600 L/day, for Building B would be 61,900 L/day and for Building C would be 32,600 L/day. These values incorporate a safety factor of x2 and account for stormwater as a result of a 10 mm precipitation event. The recommended flow rates for the proposed buildings are summarised in Table 4-2.

Building	Flow Rate Q- without a safety factor (L/day)	Flow Rate Q- with a safety factor x2 (L/day)	Storm water (@ 10 mm/24 hrs.) (L/day)	Designed Flow Rate Or Total Flow Rate (L/day)
Building A	10,500	21,000	40,600	61,600
Building B	10,600	21,200	40,700	61,900
Building C	7,300	14,600	18,000	32,600

Table 4-2: Total Construction Dewatering (Short-term Discharge) - Unsealed Excavation

It is expected that the initial dewatering rate will be higher to remove groundwater within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed locally from storage resulting in lower seepage rates into the excavation. The maximum flow calculation is intended to provide a conservative value to account for unforeseeable conditions that may arise during construction.

4.4 Permanent Drainage (Long-term Discharge)

Following the construction of the underground structure, long-term groundwater flow to the underfloor drainage system for the building will be a function of the upward flux and drainage along the foundation wall. Based on the assumed design, depth to water and given k-value, the estimated permanent theoretical flow would expect to be less than 1000 L/day (1 m³/day) for each building. For design purposes, it can be assumed that a maximum of 5,000 L/day (5 m³/day) will be needed to be pumped into the sewer system to manage any unforeseen groundwater issues in the future. The City of Toronto's foundation drainage policy and guidelines effective as of January 1, 2022, should be considered during the design for on-site management of foundation drainage or permanent drainage in future. As mentioned in the policy, on-site management options for foundation drains/permanent drainage may include but are not limited to, waterproofing the foundation, modifying building design to avoid intersection with the maximum anticipated groundwater level, and/or above-ground discharge and infiltration from sump pumps.

4.5 **Permit Requirements**

4.5.1 Environmental Activity and Sector Registry (EASR) /Permit to Take Water (PTTW) Application

An EASR is required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is between 50,000 L/day and 400,000 L/ day. The EASR application is an online registry and should be submitted to the MECP before any construction dewatering. A PTTW is only required to be submitted to the MECP if the taking of groundwater and stormwater for a temporary construction project is more than 400,000 L/ day.

Since the expected design dewatering rate for the unsealed excavation for building A and B is between the MECP water taking limit of 50,000 and 400,000 L/day, an EASR application is required to be submitted to the MECP for short-term dewatering prior to construction. Based on current groundwater conditions, permanent groundwater flow or permanent drainage is expected to be less than the water-taking limit of 50,000 L/day. Therefore, a PTTW is not required on a permanent basis.

4.5.2 Discharge Permits (Construction Dewatering)

A discharge permit will be required from the City of Toronto if private water is to be sent to the sewer system for construction dewatering and permanent drainage.

5.0 POTENTIAL IMPACTS

The following are the predicted potential impacts due to construction dewatering:

5.1 Local Groundwater Use

The area is fully serviced by municipal water supply. Since it is not expected to have any use of groundwater as a source of drinking water within a 500 meters radius from the Site, it is not anticipated that there will be short-term or long-term impacts on private water wells occurring from the proposed dewatering activities.

5.2 Point of Discharge and Groundwater Quality

The reported analytical results indicated that no parameters were in exceedance of the Toronto's Storm Sewer Discharge By-Law criteria except Total Suspended Solid (TSS), Aluminum, Arsenic, Chromium, Copper, Manganese, Nickel, Phosphorus, and Zinc. All parameters met the City's Sanitary Sewer Discharge By-Law criteria except for TSS and Aluminum. Therefore, water cannot be discharged to the City's storm and sanitary sewers without treatment. Treatment is needed to comply with the water quality limits set in Table 1 for sanitary and combined sewers and Table 2 for storm sewers before any discharge. Treatment options include but are not limited to settlement and filtration of sediments.

5.3 Settlement Due to Dewatering Activities

There are structures and utilities within the maximum predicted zone of influence (ZOI) about 43 meters for Building A and B and 31 meters for Building C when considering an unsealed excavation. Since the proposed construction is anticipated to be constructed within the low permeable sandy silt to clayey silt till deposits, an effect of settlement due to dewatering would be negligible within the predicted zone of influence.

5.4 Well Decommissioning

Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be carried out by a licenced water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

6.0 MONITORING AND MITIGATION

Based on the findings of this hydrogeological assessment and associated potential impacts due to development, the following monitoring and mitigation program is provided:

- A groundwater level monitoring program has been implemented at the Site on a bi-weekly basis for three (3) months to document the pre-construction groundwater conditions and assess seasonal groundwater fluctuations. The meet the City of Toronto's requirements, the monitoring program includes all monitoring wells and a total of six (6) water level measurements.
- Baseline groundwater quality has been assessed and established before construction. However, groundwater quality can change based on several factors (land-use change, spills, etc.) and should be monitored during construction dewatering and after construction to ensure that water quality meets the guideline or regulations associated with any permits from the MECP and the City of Toronto.
- Once a groundwater dewatering system is set up at the Site, daily and weekly monitoring should be implemented to assess the groundwater conditions such as water levels, measurement of discharge flow, discharge water quality and any adverse impacts as a result of dewatering include settlement.
- Based on the dewatering assessment, an EASR application is required. Additional monitoring may be required by the MECP to be implemented during the design stage.
- A discharge permit is required to be submitted to the city for short-term dewatering if private water is sent to the sewer system.
- Following the completion of construction activities, all dewatering wells, well points, eductors and monitoring wells installed at various stages of this project must be decommissioned. The installation and eventual decommissioning of the wells and the dewatering system must be

carried out by a licensed water well contractor in accordance with Regulation 903 of the Ontario Water Resources Act.

Should you have any questions regarding these findings, please contact the undersigned.

DS Consultants Ltd.

Prepared By:

Meysam Jafari, M.Sc., P.Geo. Project Manager

Reviewed By:

Month Ceder

Martin Gedeon, M.Sc., P.Geo. Senior Hydrogeologist

7.0 CONSULTANT QUALIFICATIONS

Martin Gedeon, M.Sc., P.Geo., is a Professional Geoscientist (P.Geo.) with over 26 years of experience as an environmental/hydrogeological consultant in the areas of groundwater and soil monitoring, environmental site assessments, environmental due diligence, and remediation. Martin has significant experience in physical and contaminant hydrogeology across Canada and overseas and has provided hydrogeological/environmental technical support on various projects. Martin has prepared hundreds of hydrogeological reports in support of permit applications for a private sector development application, municipal dewatering operations, and provincial infrastructure projects across the province.

Meysam Jafari, M.Sc., P.Geo., is a Professional Geoscientist (P.Geo.) with DS Consultants Ltd. Meysam holds two master's degrees in Engineering Geology and Geology (Soil & Groundwater) and has several years of experience working in the geoscience industry. Meysam has experience with conducting Phase One and Phase Two Environmental Site Assessments, hydrogeological and geotechnical investigations in the Greater Toronto Area (GTA), and has been involved with project coordination, field assessments, data interpretation and reporting.

8.0 **REFERENCES**

Approved Source Protection Plan: CTC Source Protection Region. Prepared by: CTC Source Protection Committee. Amendment (Version 2.0). Effective March 25, 2019

Chapman, L.J., and D.F. Putnam; The Physiography of Southern Ontario, Third Edition, Ontario Geological Survey Special Volume 2; 1984, & 2007.

Freeze, R.A. and J.A. Cherry. "Groundwater". Prentice-Hall, Inc. Englewood Cliffs, NJ. 1979.

Ontario Regulation 245/11- Environmental Activity and Sector Registry.

Ontario Ministry of Environment and Climate Change, Permit to Take Water Manual, April 2005

Powers, J. Patrick, P.E. (1992); Construction Dewatering: New Methods and Applications - Second Edition, New York: John Wiley & Sons.

Pat M. Cashman and Martin Preene; Groundwater Lowering in Construction- Second Edition, CRC Press.

Preliminary Geotechnical Investigation Proposed Residential Building 3400 Dufferin Street and 8 Jane Osler Boulevard, Toronto, Ontario. Prepared by DS Consultants, July 2022.

Figures

C:\0Sharon\22-217-100 Hydro, 3400 Dufferin Street, Toronto\1-QGIS\HydroG\Figure 1 - Site Location and MECP Well Records.qgs Jul-29 15:04

C:\OSharon\22-217-100 Hydro, 3400 Dufferin Street, Toronto\1-QGIS\HydroG/Figure 2 - Surficial Geology Map.qgs Jul-29 15:06

Appendices

Appendix A: Borehole Logs

PROJECT: Geotechnical Investigation

CLIENT: Dufferin-401 Properties Limited

PROJECT LOCATION: 3400 Dufferin St. and 8 Jane Osler Blvd, Toronto, ON DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4842495.09 E 624063.95

LOG OF BOREHOLE BH22-1

DRILLING DATA

Method: Hollow Stem Auger

DYNAMIC CONE PENETRATION

Diameter: 200mm

Date: Jun-15-2022

ENCL NO.: 2

	SOIL PROFILE		5	SAMPL	ES			DYNA RESI	MIC CO	one pe E plot		ATION			- NAT	URAL			⊢	REMARKS
(m)		⊢				IER .			20 4	40 E	50 8	80 1	00	PLASTI LIMIT	C MOIS	STURE	LIQUID	Ľ.	N ∐	AND
		LO.			S S E	NS NS	Z	SHE	AR ST	RENG	TH (kF	Pa)	1	W _P		w	WL	(KPa	AL UN	GRAIN SIZE
DEPTH	DESCRIPTION	TAF	BER		0.3		ATIC	0 0	NCONF	FINED	+	FIELD V & Sensit	'ANE ivity			-0		Š	NR (¥	(%)
		TRA	NM	ΥΡΕ	5	N NO	LEV	• 0	UICK T	RIAXIA	LX	LAB V	AŃE	WA	TER C		IT (%)	_	₹	(,,,)
190.5		0 N	z	í-	£	ΟŬ	Ш	-	20 2	40 6	80 8	50 1	00	1		20	30			GR SA SI CL
19 8 .4	GRANULAR BASE: sand and	۲XX	1	SS	22		190	<u> </u>							0					
108:9	gravel mixed with crusher	\otimes	12	22	6			Ē												
188.9	limestone, 300mm	\otimes	Ĺ	00				È.							Ĩ					1
₂ 1.6	trace gravel, grev to brown, moist.		3	SS	16			Ē							0					1
	fitm	12		<u> </u>	27		188													1
	SILTY CLAY TILL: sandy, trace		<u> </u>	33	21			F												1
	hard		5	SS	36			E							\$					Switched to
4			┢					È .												Mud Rotary at 3 1m
			1				186	-												
			6	SS	26		100	È .							0					1
			<u> </u>		-			Ē												
6			1					Ē												1
		121	7	SS	31		104	F								_				3 30 50 17
			<u>├</u>		0.		184	-							-					0 00 00 11
		12	1					È .												1
8	grey below 7.6m			SS	27			Ē							0					
<u> </u>		1.	Ľ	00	21			È.							Ĩ					1
		Rit	1				182	Ē												
				00	20			E												
		iki		- 33	30			F							ľ					
10			1					E												1
		1	1			- <u>×</u>	W. L.	180.1	m											
			10	SS	35		Jul 06	, 2022 L							þ					1
		11	1					F												1
¹² 178.3			1					Ē												
12.2	SILT: trace clay, trace to some		11	SS	31		178	<u> </u>								•				1
								È.												1
176.8								Ē												
<u>14</u> 13.7	CLAYEY SILT TILL: sandy, trace		12	SS	26			È.								0				4 37 42 17
	graver, grey, moist, very still						176													1
		jø.						È.												1
		44	13	SS	25			F							0					1
5 ¹⁶ 174.3								E												1
16.2	SANDY SILT TILL: trace to some						· 174	-	-								_	-		
1 2	ciay, trace gravel, grey, moist, very dense		14	SS	50/	╏┊╞╡┊	÷	Ē												
GD	40.100		<u> </u>		1 <u>30m</u> ŋ	ݱ╞╡		F												
°a_ <u>18</u> 172.5							÷	Ē												1
a 18.0	SAND: some silt, trace clay, trace gravel, grey, moist, very dense		15	55	50/	:目:	172	È	-		-		-	ļ,	ļ		-	1		4 82 10 4
P7.C	<u></u>		H	- 55	130mn	相目	: ···-	Ē												. 02 10 4
ō			ł			「目	3	E												
0 170.7	SILT: some clay trace sand trace	+ iiii	16	ss	50/	L'H'	.i	F							0					
8	gravel, grey, moist, very dense		<u> </u>		00mr	ł	170	-												
7-10							170	È.												1
2-2			17	SS	50/			Ē							0				1	
			\vdash		00mn			ŧ											1	
ž.			1				400	F											1	
167.6		Ш					168	E										1		
22.9	CLAYEY SILT: trace to some		18	ss	50/	1.	1	ŧ							'	2			1	
Ĭ	moist, hard]			.	1	Ē												
ال ا		H	1			1.	1	É												
S S			19	SS	48]	166	F	1							0	1	1		
ч ட	Continued Next Page	112	-		1		<u> </u>	د	Nhursh		<u> </u>					1		-		لـــــا
<u>GROUI</u>	NDWATER ELEVATIONS					NOTES	<u>+</u> + 3,	X 3∶	to Sens	sitivity	0	•=3%	' Strain	at Failu	ire					

SOIL PROFILE

LOG OF BOREHOLE BH22-1

SAMPLES

PROJECT: Geotechnical Investigation

CLIENT: Dufferin-401 Properties Limited

PROJECT LOCATION: 3400 Dufferin St. and 8 Jane Osler Blvd, Toronto, ON DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4842495.09 E 624063.95

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm Date: Jun-15-2022 REF. NO.: 22-217-100 ENCL NO.: 2

DYNAMIC CONE PENETRATION RESISTANCE PLOT PLASTIC NATURAL MOISTURE LIMIT CONTENT REMARKS GROUND WATER CONDITIONS LIQUID LIMIT POCKET PEN. (Cu) (kPa) AND 40 60 80 100 NATURAL UNIT ((kN/m³) 20 (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m Wp w WL SHEAR STRENGTH (kPa) O UNCONFINED + FIELD VANE & Sensitivity ELEVATION ELEV DEPTH DISTRIBUTION -0 -1 DESCRIPTION NUMBER (%) WATER CONTENT (%) TYPE QUICK TRIAXIAL × LAB VANE ż 40 60 80 100 10 20 30 20 GR SA SI CL . . 164.6 . h 50/ 20 SS 25.9 SAND: trace clay, trace silt, grey, 30mr wet, very dense 164 163.1 SILTY SAND: some clay, trace 50/ 21 SS 27.4 Π 0 30m gravel, grey, wet, very dense 162 161.5 50/ SAND: trace to some silt, trace 29.0 22 SS о 30m clay, trace gravel, grey, wet, very dense 30 160 159.7 50/ 23 SS 0 END OF BOREHOLE: 30.8 30mr Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): July 6, 2022 10.41

SD

LOG OF BOREHOLE BH22-2

PROJECT: Geotechnical Ir	nvestigation
--------------------------	--------------

CLIENT: Dufferin-401 Properties Limited

PROJECT LOCATION: 3400 Dufferin St. and 8 Jane Osler Blvd, Toronto, ON DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4842449.73 E 624106.89

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm

Date: Jun-14-2022

ENCL NO.: 3

	SOIL PROFILE		S	AMPL	ES				DYNA RESIS	MIC CO	DNE PEN E PLOT		ATION			ΝΔΤ					REMARKS
(m)		Ь				ATER			2	20 4	10 60		B0 1	00	PLASTI LIMIT	C MOIS	TURE	LIQUID LIMIT	PEN.	LM LIN	
ELEV	RECORDETION	PLO	~		NNS R				SHEA	AR ST	RENGT	H (k	Pa)		W _P	\	N 0	WL	ket I (kP	SAL U SAL U	GRAIN SIZE
EPTH	DESCRIPTION	ATA	1BEF	ш	<u>BLO</u>			Ā				+	& Sensiti	ANE	WA			IT (%)	õõ	ATUF)	(%)
100.0		STR.	NUN	μ	ż	DRC NO		Ц Н	• Q	20 4	RIAXIAL 10 60) X	LAB V. 80 1	ANE 00		0 2	20 :	30		z	
190.2	ASPHALT: 75mm		4		10		/ 1	190		-							-	1	-		
180.9	GRANULAR BASE: sand and	X	1	33	12				-						Ŭ						
	gravel, crusher limestone, 280mm/	X	2	SS	9				-								0				
188.4	_trace gravel, grey to brown, moist,	\boxtimes	3	99	0	Σ			-												
1.8	stiff		3	33	9		W.	L.1	88.5 i	m 											
	SILIY CLAY IILL: sandy, trace gravel, brown, moist, stiff to hard		4	SS	19		our	ļ								d —	-1				2 29 50 1
			-		04				-												Switched to
.			5	33	21				_												Mud Rotary
<u> </u>							1	186											-		
			6	99	38				_												
			0	00	50				-												
6									-												
-	grey below 6.1m		7	SS	23		1	184	-							0					
			-						-												
									-												
3			8	SS	22				-							o					
							1	182	_										1		
		N.							-												
			9	SS	26				-							0					
2								100	-												
								180	-										1		
	-		10	SS	34				-							þ					
							•		-												
						ŀ		178	-												
			11	SS	26	:目			_							o					
						に目			-												
176.5									-												
4 13.7	gravel, grey, moist, very stiff	111	12	SS	24	日	1	176	-							┣━┫					4 33 46 1
						に目			-												
		Į.Į				ŀ.Ħ.			-												
		11	13	SS	24				_							0					
<u> </u>		19.1					1	174	-										-		
173.4	SANDY SILT THE trace to some								-												
10.0	clay, trace gravel, occasional	 	14	SS	71	-			-							1					
<u>в</u>	cobble, grey, moist, very dense								_												
	dense @18.3m	. • •	15	~~~	25		1	172	-										1		
		111	15	33	35				_												
		· •; •							-										1		
170.3			<u>. 16 /</u>	SS /	50/		-				$\left \right $				-	h			┼──		
10.0	Notes:		_		75mm																
	i) somm dia. monitoring well installed upon completion.																		1		
	2) Water Level Readings:																				
	Date: Water Level(mbgl):																				
	July 6, 2022 1.7																		1		
																			1		
1						I									I				<u> </u>		

0 Strain at Failure

LOG OF BOREHOLE BH22-3

PROJECT: Geotechnical Investigation

CLIENT: Dufferin-401 Properties Limited

PROJECT LOCATION: 3400 Dufferin St. and 8 Jane Osler Blvd, Toronto, ON DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4842484.16 E 624159.33

DRILLING DATA

Diameter: 200mm

Method: Hollow Stem Auger

REF. NO.: 22-217-100

Date: Jun-22-2022

ENCL NO.: 4 т

	SOIL PROFILE		5	SAMPL	.ES	~		[F	DYNAMIC CO RESISTANCE	NE PE Plot		ATION	DLACT		URAL			F	REMARKS
(m) ELEV DEPTH	DESCRIPTION	TA PLOT	BER		BLOWS 0.3 m	UND WATER DITIONS	ATION		20 4 SHEAR STI O UNCONF	0 6 RENG	50 8 TH (kF +	a) FIELD VANE & Sensitivity			STURE NTENT W		POCKET PEN. (Cu) (kPa)	(kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
190.2		STRA	NUM	TYPE	"z	GRO	ELEV		 QUICK T 20 4 	RIAXIA 0 6	L X 60 8	LAB VANE	WA	10 :	20 :	1 (%) 30		ž	GR SA SI CL
19 8 .0	ASPHALT: 130mm	<i>.</i>	1	SS	13		19	90-					-	0					
108:8	gravel, 300mm	\bigotimes	2	SS	9	.∴⊠∵		Ē	_						0				
<u>188.5</u> <u>2</u> 1.7	trace gravel, grey to brown, moist,	KX Igr	3	SS	9		W. L Jul (L. 18 06, 2	88.9 m 2022					0					
	SILTY CLAY TILL: sandy, trace gravel, occasional cobble, brown.		4	SS	15		18	88-						0					
	moist, stiff to hard		5	SS	35		·	Ē						•	-				1 31 49 19
4							. 18	86											
	grey below 4.6m		6	SS	22	r. Hr.		Ē						0					
_ต184 1								Ē											
6.1	CLAYEY SILT TILL: sandy, trace gravel, grey, moist, stiff to hard		7	SS	28		18	84 -						4-1					7 30 45 18
								Ē	-										
8			8	SS	42	-	18	82-						0					
								-											
10			9	SS	36	-		Ē						ο					
_							18	80 F											
			10	SS	21	-		Ē	-					o					
12			1				17	78											
			11	SS	24	-		Ē						o					
14								Ē											
14			12	SS	19		17	76						•					
	stiff at 15.2m			00		-		Ē	-										
16			13	55	9		1	74							,				
173.4	SANDY SILT TILL : trace to some		1		40	-		Ē											
	clay, trace gravel, grey, wet, compact to very dense		14	SS	16			Ē	-					0					3 37 49 11
i≞ 171.7				22	50/		17	72						0					
21-FINAL 22-21/-100 GEO COPT 16	END OF BOREHOLE: Notes: 1) 50mm dia. monitoring well installed upon completion. 2) Water Level Readings: Date: Water Level(mbgl): July 6, 2022 1.3				₹ <u>5m</u> m														
US SUIL LUG-20																			

LOG OF BOREHOLE BH22-4

PROJECT: Geotechnical Investigation

CLIENT: Dufferin-401 Properties Limited

PROJECT LOCATION: 3400 Dufferin St. and 8 Jane Osler Blvd, Toronto, ON DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4842542.23 E 624190.76

DRILLING DATA

Method: Hollow Stem Auger

Diameter: 200mm

Date: Jun-15-2022

	SOIL PROFILE				SAMPLES			DYNAMIC CONE PENETRATION RESISTANCE PLOT						PLASTIC NATURAL LIQU					μ	REMARKS	
(m)		от			S	/ATEF IS	_	Z0 40 60 80 100						LIMIT CONTENT LIM			LIQUID	- PEN. Pa)	UNIT M	AND GRAIN SIZE	_
ELEV DEPTH	DESCRIPTION	LA PL	ER		LOW: 0.3 m	ND M TION	VIION	SHEA O UI	AR STI	RENG [®]	TH (kF +	Pa) FIELD V	ANE	₩p		o		OCKET (Cu) (k	-URAL (kN/m)N
400.7		STRA	NUMB	ΓΥΡΕ	۳ Z	SROU	ELEV	• Q		RIAXIAI	_ ×	LAB V	ANE 00	WA1	TER CO	ONTEN	T (%) 30	_	LAN		
189.7 18 9 .9	ASPHALT: 130mm		1	SS	- 7			-							0		1			GR SA SI (<u></u>
1809.2	GRANULAR BASE: sand and gravel, 230mm	\bigotimes	2	22	5			-													
	FILL: silty clay, trace organics, trace gravel, brown, moist, firm	\bigotimes	2	90	5		188	-													
187.4	SILTY CLAY TILL: sandy trace	X		33	5			Ē								Ĭ					
2.0	gravel, occasional cobble, brown, moist very stiff to bard		4	SS	26		W. L. Jul 06	187.3 i 2022	m 						0						
			5	SS	31		186	-							>						
4			1																		
	grey below 4.6m		6	SS	31			-							0						
							184	-													
_0			7	SS	64											0					
								-													
				22	33		182	-													
			ŀ	00	00			-													
			<u> </u>					-													
10			9	SS	33		180	-							0						
								-													
			10	SS	24			-							0						
¹² 177 5							178	-													
12.2	SANDY SILT TILL: trace to some		11	ss /	50/										0						
	to wet, very dense				Ponni			-													
<u>14</u>		[•] • . •	12	SS	50/		176	-							0						
					50mm																
			13/	SS /	4 50/			-							0					1 24 66	9
16		. . .			75mm		174	-													
7-1-77								-													
			14	ss /	50/ 75mm			-							0						
18171.7	SILTY CLAY TILL: sandy trace						172														
5 174.9 5 18.4	gravel, occasional cobble, grey,	<u> </u>	15/	ss	50/ 130mn			-						(<u> </u>						
3	END OF BOREHOLE:																				
QLQ	1) 50mm dia. monitoring well																				
201-1	2) Water Level Readings:																				
7-77	Date: Water Level(mbgl):																				
- 70																					
7-00																					
ŝ																					

O ^{8=3%} Strain at Failure

LOG OF BOREHOLE BH22-5

PROJECT: Geotechnical Investigation

CLIENT: Dufferin-401 Properties Limited

PROJECT LOCATION: 3400 Dufferin St. and 8 Jane Osler Blvd, Toronto, ON DATUM: Geodetic

BH LOCATION: See Drawing 1 N 4842461.99 E 624239.96

DRILLING DATA

Method: Hollow Stem Auger

REF. NO.: 22-217-100

ENCL NO.: 6

		SOIL PROFILE	_	s	SAMPL	ES	~			DYNA RESIS	MIC C	one pe e plot		ATION		DIACT		URAL			E	REMARKS
	(m)		4				ATEF	s		:	20	40 6	50 E	30 1	00	LIMIT	MOIS CON	STURE	LIQUID	PEN.	LN (
	ELEV	DESCRIPTION	A PLO	۲		3 m S	Ň	NOL	NOI	SHE	AR ST	RENG	TH (k	Pa)		W _P		w o	WL	CKET (kF	(kN/m ³	DISTRIBUTION
	DEPTH		RAT/	MBE	Щ	<u>P</u> .	INO	Ī	EVA		NCON UICK 1	FINED TRIAXIA	+ L X	& Sensiti LAB V	vity ANE	WA	TER CO	ONTEN	IT (%)	8 S	NATU	(%)
	190.1		STI	NN	Σ	Ż	GR	S	ELE	:	20	40 6	50 E	30 1	00	1	10 2	20	30			GR SA SI CL
	19 0.0	ASPHALT: 75mm	\$X	1	SS	10				-						0	0			1		
	100.0	gravel, 250mm	\bigotimes	2	SS	7				Ē							0					
	2	organics, trace gravel, grey to	\bigotimes	3	SS	7				-							0					
	<u>187.8</u> 2.3	SILTY CLAY TILL: sandy, trace	19.1	4	SS	16			188	-						0						
		gravel, occasional cobble, brown, moist, very stiff to hard		5	SS	18				F							0					
	4								186													
				6	SS	48											0					
						10		Z <mark></mark>		Ē												
	6	arev below 6.1m		-			╞┊╞		Jul 06	184.6 , 2022 F	m 											
		g. cy 201011 0.1111		-	55	33	ŀE			-							0					
	182.5																					
	<u> </u>	gavel, grey, moist, hard		8	SS	36			182	-							d 1					2 33 47 18
										-												
	10			9	SS	32											0					
									180	-												
				10	SS	37				Ē							0					
	12									-												
		very stiff, frequent wet sand seams		11	SS	26			178	-							0					
		at 12.211								-												
	14			12	SS	35			176	-							0					
									170	-												
	174.9 15.2	SANDY SILT TILL: trace to some	[:/ 	13	SS	50/				-							>					
21	<u>16</u>	clay, trace gravel, occasional cobble, grey, moist, very dense		·		1 <u>00mr</u>	ŕ		174	-												
22-7-			•• •			50/				Ē							0					
GDT:						30mr				Ē												
SOL	18 171.7								172	-												
γ.GF	18.4	END OF BOREHOLE: Notes:		(15/	\overline{ss}	50/ \30mr	4															
COF		1) 50mm dia. monitoring well installed upon completion.																				
GEC		2) Water Level Readings:																				
17-100		Date: Water Level(mbgl): July 6, 2022 5,5																				
22-2																						
INAL																						
2021-F																						
10G-2																						
SOIL																						
SD																						

Appendix B: Hydraulic Conductivity Analysis

			Slug Test	Analysi	s Report						
			Project:	Hydrog	jeological In	vestigation					
			Number:	22-217	-100						
			Client:	Dufferi	n-401 Proper	rties Limited					
Location: 3400 Duffe	rin St.	Slug Test: BH22	-3		Test Well:	BH22-3					
Test Conducted by: A	KM N/I M I		I EST DATE: 7/6/2022								
Analysis Performed a	Dy. IVIJ	nvoisiev			Analysis D	ale. //15/20	22				
	0000	Т	ime [s]		100		45000				
0 10.00	3000	6000	9	000	120	000	15000				
1.00											
e 0.10											
						u					
						Ĩ.					
0.01											
0.00											
Calculation using Hvor	slev										
Observation Well	Hydraulic										
	Conductivity										
	[m/s]										
BH22-3	6.05 × 10 ⁻⁸										

			Slug Test	Analysi	s Report							
			Project:	Hydrog	jeological Inv	vestigation						
			Number:	22-217	-100							
			Client:	Dufferi	n-401 Propert	ties Limited						
Location: 3400 Duffe	erin St.	Slug Test: BH22	-5		Test Well: I	BH22-5						
Lest Conducted by: I	KM	Hyprology	Analysis Date: 7/13/2022									
Analysis Performed I	Uy. IVIJ	nvorsiev			Analysis Da	ale. //15/202	۷					
0	2400	T 4800	ime [s] 7	200	960	0	12000					
10.00												
1.00												
0.10												
						*						
0.01						*						
0.00												
Calculation using Hvor	rslev											
Observation Well	Hydraulic											
	Conductivity											
	[m/s]											
BH22-5	7.94 × 10 ⁻⁸											

Appendix C: Groundwater Quality Certificate of Analysis

CA40030-JUL22 R1

22-217-100, 3400 Dufferin St, Toronto

Prepared for

DS Consultants

First Page

CLIENT DETAILS	6	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7 Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Meysam Jafari	Telephone	705-652-2000
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	Maarit.Wolfe@sgs.com
Email	meysam.jafari@dsconsultants.ca	SGS Reference	CA40030-JUL22
Project	22-217-100, 3400 Dufferin St, Toronto	Received	07/06/2022
Order Number		Approved	07/12/2022
Samples	Ground Water (1)	Report Number	CA40030-JUL22 R1
		Date Reported	07/12/2022

COMMENTS

RL - SGS Reporting Limit

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 032678

Pentachlorophenol LCS recovery was outside control limits. The overall quality control was assessed to be okay. CW Jul11/22

Fluoride spike recovery low, results accepted based on other qc

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Little

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-7
Exceedance Summary	
QC Summary	
Legend	19
Annexes	20

Client: DS Consultants

Project: 22-217-100, 3400 Dufferin St, Toronto

Project Manager: Meysam Jafari

ATRIX: WATER			s	ample Number	8
				Sample Name	BH 22-5
1 = SANSEW / WATER / Toronto Sewer Use By Law Table 1 - ischarge - BL_100_2016	- Sanitary and Combir	ned Sewer		Sample Matrix	Ground Water
2 = SANSEW / WATER / Toronto Sewer Use By Law Table 2 L_100_2016	- Storm Sewer Discha	arge -		Sample Date	06/07/2022
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Kjeldahl Nitrogen	as N mg/L	0.5	100		0.5
Total Suspended Solids	mg/L	2	350	15	431
Aetals and Inorganics				·	
Fluoride	mg/L	0.06	10		0.24
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Aluminum (total)	mg/L	0.001	50		2.11
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0016
Cadmium (total)	mg/L	0.000003	0.7	0.008	0.000190
Chromium (total)	mg/L	0.00008	4	0.08	0.00455
Cobalt (total)	mg/L	0.000004	5		0.00185
Copper (total)	mg/L	0.0002	2	0.04	0.0040
Lead (total)	mg/L	0.00009	1	0.12	0.00291
Manganese (total)	mg/L	0.00001	5	0.05	0.223
Molybdenum (total)	mg/L	0.00004	5		0.00874
Nickel (total)	mg/L	0.0001	2	0.08	0.0060
Phosphorus (total)	mg/L	0.003	10	0.4	0.190
Selenium (total)	mg/L	0.00004	1	0.02	0.00504
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005

Client: DS Consultants

Project: 22-217-100, 3400 Dufferin St, Toronto

Project Manager: Meysam Jafari

MATRIX: WATER			Si	ample Number	8
				Sample Name	BH 22-5
L1 = SANSEW / WATER / Toronto Sewer Use By Law Table 1 - S Discharge - BL_100_2016	anitary and Combin	ned Sewer		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Toronto Sewer Use By Law Table 2 - S BL_100_2016	Storm Sewer Discha	arge -		Sample Date	06/07/2022
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Tin (total)	mg/L	0.00006	5		0.00116
Titanium (total)	mg/L	0.00005	5		0.0822
Zinc (total)	mg/L	0.002	2	0.04	0.010
Microbiology					
E. Coli	cfu/100mL	0		200	20
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02	0.001	< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2	0.01	< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
Oil and Grease			-		
Oil & Grease (total)	mg/L	2			< 2
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4

Client: DS Consultants

Project: 22-217-100, 3400 Dufferin St, Toronto

Project Manager: Meysam Jafari

MATRIX: WATER			Si	ample Number	8
				Sample Name	BH 22-5
L1 = SANSEW / WATER / Toronto Sewer Use By Law Table Discharge - BL_100_2016	1 - Sanitary and Combir	ned Sewer		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Toronto Sewer Use By Law Table BL_100_2016	2 - Storm Sewer Discha	arge -		Sample Date	06/07/2022
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
рН	No unit	0.05	11.5	9.5	7.63
Chromium VI	mg/L	0.0002	2	0.04	< 0.0002
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001
PAHs				·	
Benzo(b+j)fluoranthene	mg/L	0.0001			< 0.0001
PCBs					
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001
Phenols					
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002
SVOCs					
3,3-Dichlorobenzidine	mg/L	0.0005	0.002	0.0008	< 0.0005
di-n-Butyl Phthalate	mg/L	0.002	0.08	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
Pentachlorophenol	mg/L	0.0005	0.005	0.002	< 0.0005
PAHs (Total)	mg/L		0.005	0.002	< 0.001
Perylene	mg/L	0.0005			< 0.0005

Client: DS Consultants

Project: 22-217-100, 3400 Dufferin St, Toronto

Project Manager: Meysam Jafari

MATRIX: WATER			Sa	ample Number	8
				Sample Name	BH 22-5
.1 = SANSEW / WATER / Toronto Sewer Use By Law T Discharge - BL_100_2016	Table 1 - Sanitary and Combin	ed Sewer		Sample Matrix	Ground Water
L2 = SANSEW / WATER / Toronto Sewer Use By Law T BL_100_2016	Table 2 - Storm Sewer Discha	irge -		Sample Date	06/07/2022
Parameter	Units	RL	L1	L2	Result
SVOCs - PAHs					
7Hdibenzo(c,g)carbazole	mg/L	0.0001			< 0.0001
Anthracene	mg/L	0.0001			< 0.0001
Benzo(a)anthracene	mg/L	0.0001			< 0.0001
Benzo(a)pyrene	mg/L	0.0001			< 0.0001
Benzo[e]pyrene	mg/L	0.0001			< 0.0001
Benzo(ghi)perylene	mg/L	0.0002			< 0.0002
Benzo(k)fluoranthene	mg/L	0.0001			< 0.0001
Chrysene	mg/L	0.0001			< 0.0001
Dibenzo(a,h)anthracene	mg/L	0.0001			< 0.0001
Dibenzo(a,i)pyrene	mg/L	0.0001			< 0.0001
Dibenzo(a,j)acridine	mg/L	0.0001			< 0.0001
Fluoranthene	mg/L	0.0001			< 0.0001
Indeno(1,2,3-cd)pyrene	mg/L	0.0002			< 0.0002
Phenanthrene	mg/L	0.0001			< 0.0001
Pyrene	mg/L	0.0001			< 0.0001

Client: DS Consultants

Project: 22-217-100, 3400 Dufferin St, Toronto

Project Manager: Meysam Jafari

		Si	ample Number	8
			Sample Name	BH 22-5
1 - Sanitary and Combin	ned Sewer		Sample Matrix	Ground Water
2 - Storm Sewer Discha	arge -		Sample Date	06/07/2022
Units	RL	L1	L2	Result
mg/L	0.0005	0.04	0.002	0.0026
mg/L	0.0005	0.05	0.0056	< 0.0005
mg/L	0.0005	0.08	0.0068	< 0.0005
mg/L	0.0005	4	0.0056	< 0.0005
mg/L	0.0005	0.14	0.0056	< 0.0005
mg/L	0.0005	2	0.0052	< 0.0005
mg/L	0.0005	1.4	0.017	< 0.0005
mg/L	0.0005	1	0.0044	< 0.0005
mg/L	0.0005	0.4	0.0076	< 0.0005
mg/L	0.0005	0.01	0.002	< 0.0005
mg/L	0.0005	0.16	0.002	< 0.0005
mg/L	0.0005	0.016	0.002	< 0.0005
mg/L	0.0005	1.4	0.0044	< 0.0005
mg/L	0.0005			< 0.0005
mg/L	0.0005			< 0.0005
	- Sanitary and Combin - Storm Sewer Discha Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- Sanitary and Combined Sewer 2 - Storm Sewer Discharge - Units RL mg/L 0.0005 mg/L 0.0005	Si - Sanitary and Combined Sewer - Storm Sewer Discharge - Units RL L1 mg/L 0.0005 0.04 mg/L 0.0005 0.05 mg/L 0.0005 0.08 mg/L 0.0005 0.14 mg/L 0.0005 0.14 mg/L 0.0005 1.4 mg/L 0.0005 1.4 mg/L 0.0005 0.4 mg/L 0.0005 0.4 mg/L 0.0005 1.4 mg/L 0.0005 1.4 mg/L 0.0005 1.4 mg/L 0.0005 1.4 mg/L 0.0005 1.4	Sample Number Sample Name Sample Matrix 2 - Storm Sewer Discharge - Sample Date Mnits RL L1 L2 mg/L 0.0005 0.04 0.002 mg/L 0.0005 0.04 0.002 mg/L 0.0005 0.08 0.0068 mg/L 0.0005 0.14 0.0056 mg/L 0.0005 1.4 0.0052 mg/L 0.0005 1 0.0044 mg/L 0.0005 1.4 0.0052 mg/L 0.0005 0.4 0.0076 mg/L 0.0005 1 0.0044 mg/L 0.0005 0.16 0.002 mg/L 0.0005 0.16 0.002 mg/L 0.0005 1.4 0.002 mg/L 0.0005 1.4 0.002 mg/L 0.0005 1.4 0.002 mg/L 0.0005 1.4 0.004 mg/L 0.0005

EXCEEDANCE SUMMARY

					SANSEW / WATER	SANSEW / WATER
					/ Toronto Sewer	/ Toronto Sewer
					Use By Law Table	Use By Law Table
					1 - Sanitary and	2 - Storm Sewer
					Combined Sewer	Discharge -
					Discharge -	BL_100_2016
					BL_100_2016	
	Parameter	Method	Units	Result	L1	L2
BH	22-5					
	Chloroform	EPA 5030B/8260C	mg/L	0.0026		0.002
	Total Suspended Solids	SM 2540D	mg/L	431	350	15
	Manganese	SM 3030/EPA 200.8	mg/L	0.223		0.05

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits	Spike	Recover	ry Limits
					(%)	(%)	Recovery	(9	6)	Recovery		6)
					(70)	(%)	Low	High	(%)	Low	High	
Biochemical Oxygen Demand (BOD5)	BOD0007-JUL22	mg/L	2	< 2	11	30	98	70	130	98	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits	Spike	Recover	y Limits
						(%)	Recovery	(%)	Recovery	(%	6)
						(70)	Recovery (%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0080-JUL22	mg/L	0.01	<0.01	ND	10	96	90	110	84	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	.)
	Reference			Blank	RPD	AC Spike (%) Recovery	Spike	Recover	y Limits	Spike	Recover	y Limits
							Recovery	(%	6)	Recovery	(%	6)
						(70)	(%)	Low	High	(%)	Low	High
Fluoride	EWL0110-JUL22	mg/L	0.06	<0.06	ND	10	102	90	110	63	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENVISKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (9	ry Limits 6)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Chromium VI	SKA0072-JUL22	mg/L	0.0002	<0.0002	ND	20	100	80	120	105	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC Spike (%) Recovery	Recove	ry Limits	Spike	Recover	y Limits	
							Becoven/	(9	6)	Recovery	(%	6)
						(70)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0012-JUL22	mg/L	0.00001	< 0.00001	0	20	NV	80	120	113	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-IENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	ıtrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0074-JUL22	mg/L	0.00005	<0.00005	ND	20	106	90	110	115	70	130
Aluminum (total)	EMS0074-JUL22	mg/L	0.001	<0.001	9	20	105	90	110	114	70	130
Arsenic (total)	EMS0074-JUL22	mg/L	0.0002	<0.0002	1	20	110	90	110	114	70	130
Cadmium (total)	EMS0074-JUL22	mg/L	0.000003	<0.000003	11	20	106	90	110	101	70	130
Cobalt (total)	EMS0074-JUL22	mg/L	0.000004	<0.000004	2	20	106	90	110	98	70	130
Chromium (total)	EMS0074-JUL22	mg/L	0.00008	<0.00008	ND	20	110	90	110	122	70	130
Copper (total)	EMS0074-JUL22	mg/L	0.0002	<0.0002	9	20	103	90	110	91	70	130
Manganese (total)	EMS0074-JUL22	mg/L	0.00001	<0.00001	0	20	103	90	110	88	70	130
Molybdenum (total)	EMS0074-JUL22	mg/L	0.00004	<0.00004	ND	20	105	90	110	104	70	130
Nickel (total)	EMS0074-JUL22	mg/L	0.0001	<0.0001	0	20	101	90	110	90	70	130
Lead (total)	EMS0074-JUL22	mg/L	0.00009	<0.00001	1	20	101	90	110	100	70	130
Phosphorus (total)	EMS0074-JUL22	mg/L	0.003	<0.003	20	20	93	90	110	NV	70	130
Antimony (total)	EMS0074-JUL22	mg/L	0.0009	<0.0009	ND	20	108	90	110	106	70	130
Selenium (total)	EMS0074-JUL22	mg/L	0.00004	<0.00004	10	20	105	90	110	95	70	130
Tin (total)	EMS0074-JUL22	mg/L	0.00006	<0.00006	ND	20	101	90	110	NV	70	130
Titanium (total)	EMS0074-JUL22	mg/L	0.00005	<0.00005	7	20	110	90	110	NV	70	130
Zinc (total)	EMS0074-JUL22	mg/L	0.002	<0.002	9	20	102	90	110	93	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recovery	/ Limits)	Spike Recovery	Recovery (%	y Limits)
						(%)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9092-JUL22	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method Blank	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recovery (%	y Limits)
						(%)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0135-JUL22	mg/L	0.01	< 0.01			85	55	120			
Nonylphenol Ethoxylates	GCM0135-JUL22	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0135-JUL22	mg/L	0.01	< 0.01			85	55	120			
Nonylphenol	GCM0135-JUL22	mg/L	0.001	< 0.001			83	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD AC (%)	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	y Limits	
						Recovery (%)	Low	High	(%)	Low	High	
Oil & Grease (total)	GCM0133-JUL22	mg/L	2	<2	NSS	20	112	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0133-JUL22	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0133-JUL22	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	PPD	AC	Spike	Recove	ery Limits	Spike	Recover	y Limits
					N D	A0 (%)	Оріке	(*	%)	Recovery	(%)
						(%)	(%)	Low	High	(%)	Low	High
рН	EWL0105-JUL22	No unit	0.05	NA	NA 0 100		NA					

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0085-JUL22	mg/L	0.002	<0.002	8	10	109	80	120	96	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (۹	y Limits 6)	Spike Recovery	Recover	ry Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0106-JUL22	mg/L	0.0001	<0.0001	NSS	30	88	60	140	NSS	60	140

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover	ry Limits 6)	Spike Recovery	Recover (%	y Limits
						(70)	(%)	Low	High	(%)	Low	High
3,3-Dichlorobenzidine	GCM0099-JUL22	mg/L	0.0005	< 0.0005	NSS	30	94	30	130	NSS	30	130
7Hdibenzo(c,g)carbazole	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	98	50	140	NSS	50	140
Anthracene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	90	50	140	NSS	50	140
Benzo(a)anthracene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	91	50	140	NSS	50	140
Benzo(a)pyrene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	88	50	140	NSS	50	140
Benzo(b+j)fluoranthene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	88	50	140	NSS	50	140
Benzo[e]pyrene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	97	50	140	NSS	50	140
Benzo(ghi)perylene	GCM0116-JUL22	mg/L	0.0002	< 0.0002	NSS	30	92	50	140	NSS	50	140
Benzo(k)fluoranthene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Bis(2-ethylhexyl)phthalate	GCM0116-JUL22	mg/L	0.002	< 0.002	NSS	30	100	50	140	NSS	50	140
Chrysene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	91	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0116-JUL22	mg/L	0.002	< 0.002	NSS	30	106	50	140	NSS	50	140
Dibenzo(a,h)anthracene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	88	50	140	NSS	50	140
Dibenzo(a,i)pyrene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	79	50	140	NSS	50	140
Dibenzo(a,j)acridine	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	90	50	140	NSS	50	140
Fluoranthene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	93	50	140	NSS	50	140
Indeno(1,2,3-cd)pyrene	GCM0116-JUL22	mg/L	0.0002	< 0.0002	NSS	30	93	50	140	NSS	50	140
Pentachlorophenol	GCM0116-JUL22	mg/L	0.0005	< 0.0005	NSS	30	30	50	140	NSS	50	140
Perylene	GCM0116-JUL22	mg/L	0.0005	< 0.0005	NSS	30	95	50	140	NSS	50	140
Phenanthrene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	91	50	140	NSS	50	140

Semi-Volatile Organics (continued)

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Pyrene	GCM0116-JUL22	mg/L	0.0001	< 0.0001	NSS	30	91	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-IENVIEWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Du	olicate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits 6)	Spike Recovery	Recover	y Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Suspended Solids	EWL0127-JUL22	mg/L	2	< 2	0	10	98	90	110	NA		

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-IENVISFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref	.)
	Reference			Blank	PPD	AC	Spike	Recover	y Limits	Spike	Recover	ry Limits
						(%)	Recovery	(%	6)	Recovery	(%	6)
						(70)	(%)	Low	High	(%)	Low	High
Total Kjeldahl Nitrogen	SKA0076-JUL22	as N mg/L	0.5	<0.5	5	10	97	90	110	103	75	125

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	trix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	y Limits 6)	Spike Recovery	Recover (१	ry Limits 6)
							(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	95	60	130	97	50	140
1,2-Dichlorobenzene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
1,4-Dichlorobenzene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	98	60	130	97	50	140
Benzene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	102	50	140
Chloroform	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
cis-1,2-Dichloroethene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	103	60	130	102	50	140
Ethylbenzene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
m-p-xylene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
Methylene Chloride	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
o-xylene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	99	50	140
Tetrachloroethylene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	101	50	140
(perchloroethylene)												
Toluene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140
trans-1,3-Dichloropropene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	100	60	130	103	50	140
Trichloroethylene	GCM0109-JUL22	mg/L	0.0005	<0.0005	ND	30	101	60	130	103	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	is form or be retained on file in Service accessible at	rk. Signatures may appear on the under its General Conditions of	ation for completion of woi is issued by the Company	is document	SS is consid request. Th	iable upon	ax is ava	{2} Submis onal cost.	of samples. or no addit	sportation	unlimited number of a	sent by email to an	 {3} Results may be 	t that you have b ping documents)	is acknowledgemen ve format (e.g. shipp	/ 2022 Note: Submission of samples to SGS / the contract, or in an alternation	Date of Issue: 02 Ma
	rellow & White Copy - SGS	(mm/dd/yy)	26,22	1+10	Date: C					5129		Verc hik	Signature:		ini	by (NAME): Kartic mullus	Relinquished
Instruction Contrast instruction of and allower by any statutes in the statutes and instruction. Name of any statutes instructin. Name of any statutes instru	³ ink Copy - Client	(mm/dd/yy)	6,22	0170	Date: (Hachb	Signature:		4	NAME): Katty Mckword	Sampled By (
Name of the Statistic Control of the Statistic Contro												8 a 1		i.		Comments/Special Instructions	Observations/
Searce Link Link Searce Link <						0.000											12
Server ID Under REG Developed and frame frame and registration of memory and regist					1												11
Server 10: Control Bit Mark Server 10: Normal Sector 10: Server 10:							in the second										10
Nome: Nome: <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>190 - 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>9</td></th<>										190 - 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10		-					9
Name 10 Kight B. Kight M. Name 10 (Construction of Name 2010 and the mathing found of the mathi					140					A verilier							8
Interest for another board ratio of the EEP shares of the E					1000												7
Nonce we fully Links (27 units) Nonce (1000 monos) (10000 monos) (1000 monos) (1000 monos) (1000 mon										199							6
Secure 25 (Life) ALL Life ALL Conside the constraints in strate and the st				2						ala ferra y L							5
Name: Light (Light (<thlight (<="" th=""></thlight>						14.14											4
Revere Br. Linder RD Constant Court Units. Cut Wite 28 brance Dr. 4 and 200 Thimmet Dr	XIMPIR																ω
Lotter ED conserve Durit Leader, Durit 2 ED Prover Dir P colspan="2">Prover Dir P colspan="2">Prover Dir P colspan="2">Prover Dir P colspan="2" Prover Dir P colspan="2" Prover Dir P colspan="2" Prover Dir P colspan="2"								233		10,000							2
Index: B1 Converter Control and London, ON WEI 28 Prove () Figure () Readed Date: () Readed Da	Non-fillerad			3				10.3013			<	GW N	8	- Am	2/10/20	122-5	1 R)
- Lodent ES Consenten Court. Locolor, ON, ME 283 Press, 542-001 fine. EST 4000 fine. 519 627.0001 Page 1 of 1 Received Bit: Light Light Light Charles Light Light Charles Light Ligh		Specify pkg: Water Character General Ext ABU General General ABU General General General General General General General General General General General General General	Sewer Use:	Organochlorine or specifi Turionto Su	BTEX only Pesticides		F1-F4 + BTEX	PCBs Total	PAHs only SVOCs	ICP Metals on Cr,Co,Cu,Pb,Mo,Ni,Se,Ag,	Field Filtered (Metals & Inor incl CrVI, CN, Hg pH, (B(H) (CI, Na-water) Full Metals Su ICP metals plus B(HWS-se	MATRIX	D BOTTLES	TIME	DATE SAMPLED	AMPLE IDENTIFICATION	
Recover BY: Lindow EST Consolution Count London. ON, ME 228 Phone gHore 27-4800 To Face 877-4800 To Face 878-4800 To Face 877-4800 To Face 877-4800		izati ended		y othe	1. 11. 11.					y sb ti,u,v,:	Y/N gan vs),E0			ON [VES [RECORD OF SITE CONDITION (RSC)	-
- London: ESP Concentine Court. London, OK, NEE 288 Prevent. State 2000 Fac. S19-672-000 Face 200 Fac. S19-672-000 Face 200 Fac. S19-672-000 Reventer By: Little Littl	OPANALITO.			1 053	- Marine			Ļ		,As,Ba Zn) ics c,sar) Hg, C		*See note	ot Reportable	ODWS N	Ime <350m3 >350m3	Soil Volu
Image: Second By: Middle Stiperstore For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4300 for Fax: 516-572-0301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4300 for fax: 516-572-0301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4300 for fax: 516-572-0301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4300 for fax: 516-572-0301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4300 for fax: 516-572-0301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4300 for fax: 516-572-0301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, CM, NEE 288 Prover \$P\$72-4301 For cancer for consortium Court, London, For court, Sortium Prover for court, Sortium Prover for Court, London, For cancer for consortium Prover for court, Sortium Prove for court, Sortim Prove for court, Sortim Prove for court, Sortium Prov		²kg]]		SH2			-4	Aroclor		a,Be,B,C	-soil) CrVI	ron to	- India		MISA	Appx.	Table
Index BY Consention Court, London, ON, NE 288 Prome \$194:672-4000 To Free 877-448:000 Fax: 519:672-4081 Page		Specify Specify tests tests)m	4. 19. AN					d,		Storm		MMER	PWQO		Table 2
- London: GF7 Consortium Court, London, ON, NE 253 Proces, 594-572-4500 Tol Face, 817-648-0600 Fac, 519-672-4501 Page		cify) SPLP TCLP	Utner (please spec	est		<	PHC	PCB	SVOC		IVI OLI	r By-Law:	Sewe	Ilations:	Other Regu	D.Reg 406/19	Tahle 1
- London: 657 Consortium Court, London, ON, NEE 288 Phone: 59.6972-4000 Tell Face: 819-6972-0001 Page				ESTEL	REQU	SISA	NAL	A			-	Ş			ILATIONS	for the second s	
- Londen: 657 Consentium Court, Londen, ON, NE 258 Phone, 549-672-0601 Total and the section of the sectin of the section of the sectin of the section of the section of t	ON MUST BE SUBMITTED	TER CHAIN OF CUSTODY) WATER SAMPLES F 1 SGS DRINKING WA	(POTABLE WITH	RINKING	NOTE: E				-	pecify Due Date:	Stants. S	a discome	untry (Email:ACCO	your jayan educal	Email: M
-London: 657 Consortium Court, London; ON, NE 288 Phone; 519-672-0300 Tail Face, 877-448-0800 Fax: 519-672-0361 Page of		NC NC	OR TO SUBMISSIC	TIVE PRI	ESENTA	SREPR	ITH SG	BILITY M	FEASI	MRUS	LEASE CONFIR		4-939:	5-20	Phone: 90		Fax:
Received By: Istack Stigent Received By (signature): Received By (signature): Received By (signature): Received By (signature): Received Date: Date: <td>egins next business day</td> <td>3pm or on weekends: TAT b</td> <td>imples received after 6</td> <td>Sc I o Davie</td> <td></td> <td>]</td> <td>×-</td> <td>Tay App</td> <td>r days)</td> <td>IAI (o-</td> <td></td> <td>10,</td> <td>1 t) UNI-</td> <td>AT NW</td> <td>Address: 6 2</td> <td>42 - 821 - 559h</td> <td>Phone: A</td>	egins next business day	3pm or on weekends: TAT b	imples received after 6	Sc I o Davie]	×-	Tay App	r days)	IAI (o-		10,	1 t) UNI-	AT NW	Address: 6 2	42 - 821 - 559h	Phone: A
Received By: Include Strippent Received By (signature) Laboratory Information Section - Lab use only Received Date: Image Image Image Image Received Time: Image Image Image Image Image Image Image Image Image Image Received Date: Image Image Image Image Image Received Time: Image Image Image Image Image Received Time: Image Image Image Image Image Received Time: Image Image Image Image Image Image Image Image Image Image Image	r holidays & weekends).	ness days (exclude statutor	T's are quoted in busin	TA TA	AROUND	TURN			7	+ + +	2		10%	Keury	Contact:	221 Huy t, Unit 14,	Address:
Received By: Linduc Stigent Received By (signature): Laboratory Information Section - Lab use only Received Date: Approx Custody Seal Present: Yes No Cooling Agent Present: Yes Type: Laboratory Received Time: Approx Chr: min Custody Seal Intact: Yes No Temperature Upon Receipt (°C) Type: Laboratory Report INFORMATION Invoice INFORMATION Invoice INFORMATION Custody Seal Intact: Yes No Temperature Upon Receipt (°C) Type: Lab Company: OS Concurt Kr.h 5 4 4 (same as Report Information) Custation #: P.O. #: P.O. #:	inst, Town	3400 Duffe	Site Location/ID:					100	4	1	roject #: 24	P-HJ	m. Hants	S Car	Company: D	Motor mola	Contact: N
- London: 657 Consortium Court, London, ON, NGE 258 Phone: 519-672-4500 Toll Free: 877-848-8080 Fax: 519-672-0361 Page Received By:			P.O. #:						ſ)	uotation #:	Q	mation)	Report Infor	(same as	25 Consultants 2td	Company:
- London: 657 Consortium Court, London, ON, NGE 258 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Page 1 of 1 Received By: Intratic Stigent Received By (signature): Laboratory Information Section - Lab use only Received Date: Table /													FORMATION	INVOICE IN		REPORT INFORMATION	
- London: 657 Consortium Court, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Page of	30-34127	LAB LIMS A YOC			the	Type:	DZ/	Yes	^o resent: pon Recei	ig Agent Frature U	Coolin	s s	By (signature): eal Present: Yes eal Intact: Yes	Custody S Custody S	y)	e: 17 : 07 (hr : min)	Received By: Received Dat Received Tim
- London: 657 Consortium Court, London, ON, N6E 258 Phone; 5/19-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361							only	ıb use (ion - La	n Sect	tory Informatic	Laborat			ALC: NO.	Acrata Resarch	
	Page of					H	-672-036) Fax: 519	-848-8060	-ree: 877	519-672-4500 Toll F	I6E 2S8 Phone:	rt, London, ON, N	onsortium Cou	- London: 657 Co		C
											•		1			-	

Appendix D: MECP Water Wells Records

			Hydrogeo	logical Investig	gation -	Propose	d Residentia	al Buildin	ngs, 3400	Dufferin St	treet and 8 J	ane Osler Blvd, Toronto, ON
TOWNSHIP C	UTM	Е	Ν	DATE CNTR	CASING	WATER	PUMP TEST	WELL US	SCREEN	WELL	1	FORMATION
											(C25359)	
NORTH YORK B	17 W	623835	4842066	2013-07 7230						7218673	A161856 P	
												SAND SOFT 0004 GREY CLAY SILT
											(Z219971)	SOFT 0023 GREY CLAY SILT TILL
NORTH YORK B	17 W	624300	4842673	2015-10 6607	2			MO	0024 13	7252533	A192811	0037
											(Z145423)	SAND SILT DNSE 0022 GREY SAND
NORTH YORK B	17 W	624424	4842593	2012-01 7241	1.75			MT	0025 10	7179989	A128455	SILT WBRG 0035
											(Z100951)	
NORTH YORK B	17 W	624065	4842689	2013-01 7048						7195692	A115256	
											(Z165402)	BRWN SILT 0016 GREY SILT CLAY
NORTH YORK B	17 W	624047	4842552	2013-02 7241	2			DE MO	0014 10	7198077	A117553	0024
											(Z165403)	BRWN SILT 0016 GREY SILT CLAY
NORTH YORK B	17 W	624661	4842523	2013-02 7241	2			MT	0014 10	7198078	A117552	0024
											(Z165401)	BRWN SILT 0016 GREY SILT CLAY
NORTH YORK B	17 W	624046	4842590	2013-02 7241	2			MT	0014 10	7198079	A117551	0024
											(C19711)	
NORTH YORK B	17 W	624057	4842451	2013-06 7147						7203970	A137363 P	
		(00)(00)									(Z145413)	CLAY DNSE 0014 GREY CLAY SILT
NORTH YORK B	17 W	623692	4842586	2012-01 7241	1.25			MT	001610	7179561	A128450	DNSE 0026
		(00)(00)			1.0.5						(Z145414)	CLAY DNSE 0014 GREY CLAY SILT
NORTH YORK B	17 W	623692	4842586	2012-01 7241	1.25			MT	002610	7179560	A128449	DNSE 0026
	1 17 141	(24111	4042402	2012 05 5220						5010(01	(C25341)	
NORTH YORK B	17 W	624111	4842402	2013-07 7230						7218681	A161849 P	
	1 77 147	(24222	4042200	2014 02 0040						7010007	(C24513)	
NORTH YORK B	17 W	624332	4842209	2014-03 6946						/21902/	A14/259 P	
	1 7 147	(24270	4042166	2012 07 (002						7010010	(C21/50)	
NORTH YORK B	1/ VV	624279	4842166	2013-07 6902						/219316	A130409 P	
	1 77 147	(22705	4042140	2014 05 7247	0.75			M	0010 5	7222004	(21/9648)	SILT LOUS 0004 BRWN CLAY SAND
NURTH YURK B	1/ VV	623785	4842148	2014-05 /24/	0.75				00105	7222994	A156007	0015
NODTH VODU D	17 147	621112	1012100	2014 00 6000						7727717	LL240U3J	
	1/ VV	024112	4042400	2014-09 0988				<u> </u>	}	/23221/	A101049A	
	17 \\/	672024	1012061	2014 00 6000						7727727	(624004) A161056 A	
	1/ //	023034	4042004	2014-07 0700						1232232	(C28770)	
NORTH VORK R	17 W	624293	4847166	2015-05 7147						7242241	Δ175790 P	

				r			1				
										(C22656)	
NORTH YORK B	17 W	624020	4842487	2013-07 7147					7205401	A137363 P	
										(Z122672)	BRWN SAND 0010 BRWN SILT CLAY
NORTH YORK B	17 W	623659	4842355	2010-09 7241	1		MT	0008 10	7154054	A108617	0018
										(Z34249)	BRWN SAND SILT 0004 BRWN CLAY
NORTH YORK B	17 W	624244	4842100	2006-01 7241	1.22			0014 10	6929936	A035940 A	SAND 0008 GREY CLAY SILT 0024
										(Z49533)	BLCK 0001 BRWN FILL 0001 BRWN
NORTH YORK B	17 W	623706	4842400	2006-05 7147	1.97		NU	0007 10	6930320	A041538	CLAY 0017
											BRWN GRVL SAND LOOS 0005 BRWN
										(Z90054)	SILT TILL 0010 GREY SAND SILT
NORTH YORK B	17 W	624552	4842751	2008-10 7215			TH	0005 9	7118523	A079239	0014
											BRWN SILT SAND LOOS 0002 GREY
										(Z109113)	SILT STNS LOOS 0012 GREY SILT
NORTH YORK B	17 W	624155	4842482	2010-03 6946	2.04	9	MO	0025 10	7143592	A094476	DNSE 0034
											BRWN SAND GRVL FILL 0002 BRWN
										(Z118953)	SILT CLAY DNSE 0005 GREY CLAY
NORTH YORK B	17 W	623926	4842181	2010-07 7241	5.19		MT	00033	7149492	A102955	SILT DNSE 0006
											BRWN SAND GRVL FILL 0002 BRWN
										(Z118940)	SILT CLAY DNSE 0005 GREY CLAY
NORTH YORK B	17 W	623947	4842146	2010-07 7241	5.19			0004 3	7149493	A102880	SILT DNSE 0007
										(Z122692)	BRWN SILT SAND 0008 GREY CLAY
NORTH YORK B	17 W	623691	4842369	2010-09 7241	1.5		MT	0009 10	7154034	A108614	SILT 0019
											BRWN GRVL SAND LOOS 0007 BRWN
										(Z145422)	SAND SILT 0021 GREY CLAY SILT
NORTH YORK B	17 W	624669	4842592	2012-01 7241	1.75		MT	0022 10	7179988	A128454	WBRG 0032
										(Z122690)	
NORTH YORK B	17 W	623657	4842329	2010-09 7241	1.5		MT	0007 5	7154036	A108616	GREY SILT CLAY WBRG 0012
											BRWN SAND SOFT 0001 GREY CLAY
										(Z219972)	SILT SOFT 0023 GREY CLAY SILT TILL
NORTH YORK B	17 W	624262	4842693	2015-09 6607	2		МО	0034 11	7252546	A192806	0045
										(Z122671)	BRWN SAND GRVL 0004 GREY SILT
NORTH YORK B	17 W	623650	4842497	2010-09 7241	1.25		MT	0004 10	7154055	A108710	CLAY 0010 GREY SILT TILL 0014

NORTH YORK B 17 W 624174 4842744 2011-11 6607 2 FR MO 0050 10 7173071 A115262 0060 NORTH YORK B 17 W 624174 4842744 2011-10 6607 2 FR MO 0050 10 7173071 A115262 0060 NORTH YORK B 17 W 624065 4842689 2011-10 6607 1.25 FR 0055 MO 0050 10 7173071 A115262 DNSE 0055 GREY SULT SAND HARD NORTH YORK B 17 W 624065 4842689 2012-02 7241 MT 7177741 A128449 A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A128449 A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A128449 A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A128449 A NORTH YORK B 17 W 623719 4842591 2012-02 7241 L2 MT 0030 10													BRWN LOAM SAND SOFT 0003 BRWN
NORTH YORK B I 7 W 624174 484274 2011-11 6607 2 R MO 0050 10 717307 (Z130533) DNSE 0055 GREY SILT SAND HARD NORTH YORK B I 7 W 624174 484274 2011-10 6607 2 FR MO 0050 10 717307 A115262 0060 NORTH YORK B I 7 W 624065 4842689 2011-10 6607 1.25 FR 0055 MO 0050 10 717476 A11526 0060 NORTH YORK B I 7 W 624051 4842591 2012-02 7241 C MT 717774 A128449 A C C146501 NORTH YORK B I 7 W 623719 4842591 2012-02 7241 MT MT 7177743 A128652 A NORTH YORK B I 7 W 623719 4842591 2012-02 7241 L MT 7177743 A128652 A NORTH YORK B I 7 W 623719 4842591 2012-02 7241 L 2 MT 001010 7179774 A1286450 NORTH YORK B I 7 W </td <td></td> <td>CLAY DNSE 0035 GREY SILT SAND</td>													CLAY DNSE 0035 GREY SILT SAND
NORTH YORK B 17 W 624174 4842744 2011-11 6607 2 FR MO 0050 10 7173071 115262 0060 BRWN SAND GRVL SOFT 0003 GREY (LAY SULT DNSE 0025 GREY CLAY SULT HARD 0005 GREY SULT CLAY SULT HARD 0005 GREY SULT SULT HARD 0001 GREY SULT THLL SAND GRY SULT HALD SULT HARD 0001 GREY SULT THLL SAND GRY SULT HARD 0001 GREY SULT THLL SAND GRY SULT HALD SULT HARD 0001 GREY SULT THLL SAND GRY SULT HALD SULT HARD 0001 GREY SULT THLL SAND GRY SULT HALD SULT HARD 0001 GREY SULT THLL SAND GRY SULT HALD SAND GRY SULT HALD SAND GRY SULT HALD 0001 GREY SULT THLL SAND GRY SULT HALD 0001 GREY SU												(Z130533)	DNSE 0055 GREY SILT SAND HARD
NORTH YORK B 17 W 624065 4842689 2011-10 6607 1.25 FR 0055 MO 0050 10 7177761 A115256 0060 NORTH YORK B 17 W 624065 4842689 2011-10 6607 1.25 FR 0055 MO 0050 10 7177761 A115256 0060 NORTH YORK B 17 W 623719 4842591 2012-02 7241 C MT 7177742 A1284500 0060 NORTH YORK B 17 W 623719 4842591 2012-02 7241 C MT 7177742 A1284500 C C C1465601 NORTH YORK B 7 W 623719 4842591 2012-02 7241 C MT 7177743 A108652 MT SUB SOB SCH SO	NORTH YORK B	17 W	624174	4842744	2011-11 6607	2	FR		МО	0050 10	7173071	A115262	0060
NORTH YORK I TW 624065 4842689 2011-10 6607 1.25 FR 0055 MO 0050 10 7174761 A115250 0060 NORTH YORK I TW 623719 4842591 2012-02 7241 Image: Control of the													BRWN SAND GRVL SOFT 0003 GREY
NORTH YORK B 17 W 624065 4842689 2011-10 6607 1.25 FR 0055 MO 0050 10 7174761 A115256 DNSE 0055 CREY SAND SILT DASE NORTH YORK B 17 W 623719 4842591 2012-02 7241 C M M 7177761 A128449A CIL465801 NORTH YORK B 17 W 623719 4842591 2012-02 7241 C M M 7177741 A128449A CIL465801 NORTH YORK B 17 W 623719 4842591 2012-02 7241 C M M 7177743 A128449A CIL465801 NORTH YORK B 17 W 623719 4842591 2012-02 7241 C MT MT 7177743 A108652A NORTH YORK B 17 W 623729 4842582 2012-017241 1.25 MT 00101 7159571 A108652A NORTH YORK B 17 W 623695 4842382 2012-017241 1.25 MT 00101 7159571 A108652A NORTH YORK B 17 W 623695 4842382 2019-07241 1.5 MT 001010 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>CLAY SILT DNSE 0025 GREY CLAY</td></t<>													CLAY SILT DNSE 0025 GREY CLAY
NORTH YORK B I 7 W 624065 4842689 2011-10 6607 1.25 R 0055 M0 0050 10 7174761 A1152550 0060 NORTH YORK B I 7 W 623719 4842591 2012-02 7241 I MT 7177741 A128449 A NORTH YORK B I 7 W 623719 4842591 2012-02 7241 I MT 7177741 A1284500 NORTH YORK B I 7 W 623719 4842591 2012-02 7241 I MT 7177743 A1286500 NORTH YORK B I 7 W 623719 4842591 2012-02 7241 I MT T777743 A1286502 NORTH YORK B I 7 W 623719 4842591 2012-02 7241 I MT MT 7177743 A128652 NORTH YORK B I 7 W 623729 4842583 2012-01 7241 I.25 MT 003010 7179174 A128652 NORTH YORK B I 7 W 623792 484238 2010-09 7241 I.5 MT 00301 7179517													SILT HARD 0050 GREY SILT CLAY
NORTH YORK B 17 W 624065 6482689 2011-10 6607 1.25 FR 0055 MC 0050 10 7174761 A115256 0060 NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177741 A12849A (Z146550) NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177742 A128450A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A108652A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A108652A NORTH YORK B 17 W 623722 4842383 2012-01 7241 1.25 MT 0030 10 7177743 A108652 DNSE 0012 CREY CLAY SILT NORTH YORK B 17 W 623695 484238 2012-01 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBR 0020 NORTH YORK B 17 W 623695 484238 2012-01 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBR 0020 BRWN SILT SAND 0005 GREY SILT NORT												(Z130526)	DNSE 0055 GREY SAND SILT DNSE
NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177741 A128449.A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177742 A128459.A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177742 A128459.A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A128450.A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A108652.A NORTH YORK B 17 W 623792 4842383 2012-01 7241 1.25 MT 0030 10 7177743 A108615 DNSE 0030 NORTH YORK B 17 W 623695 484238 2012-01 7241 1.25 MT 0010 10 715403 SURV SAND FILL 0002 GREY SILT NORTH YORK B 17 W 623695 484238 2019-07 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W<	NORTH YORK B	17 W	624065	4842689	2011-10 6607	1.25	FR 0055		MO	0050 10	7174761	A115256	0060
NORTH YORK B 17 W 622719 4842591 2012-02 7241 MT 717774 1284949 A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 717774 128450 A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 717774 A128450 A NORTH YORK B 17 W 623719 4842591 2012-02 7241 MT 7177743 A108652 A NORTH YORK B 17 W 623722 4842383 2012-01 7241 1.25 MT 0030 10 7179773 A108651 CLAY WBRG 0020 NORTH YORK B 17 W 623695 4842383 2010-09 7241 1.5 MT 0010 10 7154035 A108651 CLAY WBRG 0020 NORTH YORK B 17 W 623695 4842629 2020-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623904 4842692 2019-06 6988 2019-010 734316 A256466 P 244204 A10001 BRWN FILL <td></td> <td>4 17 141</td> <td>(00540</td> <td>4040504</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(Z146581)</td> <td></td>		4 17 141	(00540	4040504								(Z146581)	
NORTH YORK B 17 623719 4842591 2012-02 7241 MT 7177742 A128450 A NORTH YORK B 17 623719 4842591 2012-02 7241 MT 7177742 A128450 A NORTH YORK B 17 623719 4842591 2012-02 7241 MT 7177742 A128450 A NORTH YORK B 17 623722 4842591 2012-02 7241 MT 7177742 A108652 BRWN SAND FILL 0002 BRWN CLAY NORTH YORK B 17 623722 484238 2012-017241 1.25 MT 0030 10 7179517 A108652 DNSE 0030 NORTH YORK B 17 623695 484238 2010-097241 1.5 MT 0010 10 715742 A108652 DNSE 0030 NORTH YORK B 17 623695 4842629 2020-097241 1.5 MT 0010 10 715743 A108652 DNSE 0030 NORTH YORK B 17 623695 4842689 2019-06 6988 MT MT	NORTH YORK B	17 W	623/19	4842591	2012-02 /241				MT		/1///41	A128449 A	
NORTH YORK B17 W 623719 4842591 2012-02 7241 M1 717/742 A128430 A NORTH YORK B17 W 623719 4842591 2012-02 7241 MT 7177743 A108652 A NORTH YORK B17 W 623722 4842383 2012-01 7241 1.25 MT 0030 10 71779517 A108652 A NORTH YORK B17 W 623695 4842383 2012-01 7241 1.25 MT 0030 10 7179517 A108652 A NORTH YORK B17 W 623695 4842383 2010-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B17 W 623908 4842629 2020-09 7241 1.5 MT 0101 0 7154035 A108615 CLAY WBRG 0020 NORTH YORK B17 W 623908 4842629 2020-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B17 W 623908 4842629 2019-06 6988 - 7343116 A256466 P NORTH YORK B17 W 624140 4842818 2019-11 7644 2 UT 0025 ///: MT 002010	ΝΟΡΤΗ ΧΟΡΖ Ρ	17 147	622710	4042501	2012 02 7241				МТ		7177740	(2146560)	
NORTH YORK B 17 623719 4842591 2012-02 7241 MT MT 7177743 A10852 A NORTH YORK B 17 623722 4842383 2012-01 7241 1.25 MT 0030 10 7177743 A10852 A DNSE 0012 GREY CLAY SILT NORTH YORK B 17 623695 4842383 2012-01 7241 1.25 MT 0001 0 7179717 A10852 DNSE 0012 GREY CLAY SILT NORTH YORK B 17 623695 4842338 2010-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 623695 4842629 2020-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 623902 4842629 2020-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 623902 4842629 2020-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 623902 4842580 2019-06 6988 MT	NUKINIUKK D	1/ VV	023/19	4042391	2012-02 7241				141 1		/1///42	A128450 A	
NORTH YORK B 17 W 6223722 4842383 2012-01 7241 1.25 MT 0030 10 7179517 A108652 BRWN SAND FILL 0002 BRWN CLAY NORTH YORK B 17 W 623722 4842383 2012-01 7241 1.25 MT 0030 10 7179517 A108652 DNSE 0030 NORTH YORK B 17 W 623695 4842338 2010-09 7241 1.5 MT 0010 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623904 4842629 2020-09 7241 1.5 MT 0010 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623942 4842380 2019-06 6988 MT 0010 7354316 A256466 P NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 ///: MT 0020 10 7353453 A284917 CLAY WBRG 0020 NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 ///: MT 0020 10 7353453 A284917 CLAY 0030 NORTH YORK B 17 W 6	NORTH VORK B	17 W	623719	4842591	2012-02 7241				МТ		7177743	Δ108652 Δ	
NORTH YORK B 17 W 623722 4842383 2012-01 7241 1.25 MT 0030 10 7179517 A108652 DNSE 0030 NORTH YORK B 17 W 623695 4842338 2010-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623695 4842338 2010-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623904 4842629 2020-09 7241 (Z45453) NORTH YORK B 17 W 623942 4842638 2019-06 6988 (Z47078) NORTH YORK B 17 W 623942 4842818 2019-11 7644 2 UT 0025 ///: MT 0020 10 7354531 A284917 CLAY 0030 NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 ///: MT 0020 10 7354531 A284917 CLAY 0030 NORTH YORK B 17 W 624140 4842818 2019-12 7644 2 UT 00	NORTH TORR D	17 W	023717	1012371	2012-027241				1*1 1		/1// 45	A1000J2 A	BRWN SAND FILL 0002 BRWN CLAY
NORTH YORK B 17 W 623722 4842383 2012-01 7241 1.25 MT 0030 10 7179517 A108652 DNSE 0030 NORTH YORK B 17 W 623695 4842338 2010-09 7241 1.5 MT 0010 10 7154035 A108652 DNSE 0030 NORTH YORK B 17 W 623695 4842382 2010-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623908 4842629 2020-09 7241 7369722 A302568 P NORTH YORK B 17 W 623942 4842380 2019-06 6988 7343116 A256466 P NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 ///: MT 0020 10 7353453 A284917 CLAY 0001 BRWN SAND NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 //: MT 0020 10 7353453 A284917 CLAY 0030 GRVL FILL 0010 BRWN SAND NORTH YORK B 17 W 624033 4842550												(7.145453)	SILT DNSE 0012 GREY CLAY SILT
NORTH YORK B 17 W 623695 4842338 2010-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623908 4842629 2020-09 7241 1.5 MT 0010 10 7154035 A108615 CLAY WBRG 0020 NORTH YORK B 17 W 623908 4842629 2020-09 7241 1.5 MT 0020 10 7369722 A302568 P NORTH YORK B 17 W 623942 4842380 2019-06 6988 1.5 1.5 MT 0020 10 7353453 A284917 CLAY WBRG 0020 NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 ///: MT 0020 10 7353453 A284917 CLAY 0030 NORTH YORK B 17 W 624250 4842818 2019-12 7644 2 UT 0029 ///: 0T 0015 10 7353454 A284926 SILT 0025 GRVL FILL 0010 BRWN TILL CLAY NORTH YORK B 17 W 624033 4842550 2019-11 7215 0T 0015 10 7353454 A284926 SILT 0025 GRVL FILL 0010 BRWN TILL CLAY NORTH YORK B 17 W 624034 4842	NORTH YORK B	17 W	623722	4842383	2012-01 7241	1.25			МТ	0030 10	7179517	A108652	DNSE 0030
NORTH YORK B 17 W 623695 4842338 2010-09 7241 1.5 MT 0010 10 7154035 Å108615 CLAY WBRG 0020 NORTH YORK B 17 W 623908 4842629 2020-09 7241 - </td <td></td> <td>(Z122693)</td> <td>BRWN SILT SAND 0005 GREY SILT</td>												(Z122693)	BRWN SILT SAND 0005 GREY SILT
NORTH YORKB 17 W 623908 4842629 2020-09 7241	NORTH YORK B	17 W	623695	4842338	2010-09 7241	1.5			MT	0010 10	7154035	A108615	CLAY WBRG 0020
NORTH YORK B17 W62390848426292020-09 7241Image: Comparison of the comparison												(Z345166)	
NORTH YORK B17 W62394248423802019-06 6988Image: Construction of the construction of t	NORTH YORK B	17 W	623908	4842629	2020-09 7241						7369722	A302568 P	
NORTH YORK B 17 W 623942 4842380 2019-06 6988 Image: Constraint of the constraint of t												(C40788)	
Image: constraint of the state of the sta	NORTH YORK B	17 W	623942	4842380	2019-06 6988						7343116	A256466 P	
NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 //: MT 0020 10 7353453 A284917 CLAY 0030 NORTH YORK B 17 W 624120 4842818 2019-11 7644 2 UT 0025 //: MT 0020 10 7353453 A284917 CLAY 0030 NORTH YORK B 17 W 624250 4842818 2019-12 7644 2 UT 0029 //: OT 0015 10 7353454 A284926 BLCK HARD 0001 BRWN SAND NORTH YORK B 17 W 624250 4842818 2019-12 7644 2 UT 0029 ///: OT 0015 10 7353454 A284926 SILT 0025 NORTH YORK B 17 W 624033 484250 2019-11 7215 Image: Content of the second													BLCK HARD 0001 BRWN FILL
NORTH YORK B 17 W 624140 4842818 2019-11 7644 2 UT 0025 //: MT 0020 10 7353453 A284917 CLAY 0030 NORTH YORK B 17 W 624250 4842818 2019-12 7644 2 UT 0029 //: 0T 0015 10 7353453 A284917 CLAY 0030 NORTH YORK B 17 W 624250 4842818 2019-12 7644 2 UT 0029 //: 0T 0015 10 7353454 A284926 SILT 0025 NORTH YORK B 17 W 624033 4842550 2019-11 7215 Image: Control of the second s												(Z327010)	SAND GRVL 0015 GREY SILT TILL
NORTH YORK B 17 W 624250 4842818 2019-12 7644 2 UT 0029 ///: 0T 0015 10 7353454 A284926 SILT 0025 NORTH YORK B 17 W 624033 4842550 2019-11 7215 - - - - 7363563 A284416 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 - - - - 7363563 A284416 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 - - - - 7363563 A284416 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 - - - - 7363563 A284416 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 - - - - 7363564 A269274 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 - - - - 7363564 A269274 P	NORTH YORK B	17 W	624140	4842818	2019-11 7644	2	UT 0025	///:	MT	002010	7353453	A284917	CLAY 0030
NORTH YORK B 17 W 624250 4842818 2019-12 7644 2 UT 0029 //: 0T 0015 10 7353454 A284926 SILT 0025 NORTH YORK B 17 W 624033 4842550 2019-11 7215 - - - - 7363563 A284416 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 - - - - 7363563 A284416 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 -													BLCK HARD 0001 BRWN SAND
NORTH YORK B 17 W 624250 4842818 2019-127644 2010029 //: 01 001510 7353454 A284926 Shl10025 NORTH YORK B 17 W 624033 4842550 2019-117215 Image: Construction of the second se		1 77 3 47	(24250	4042010	2010 12 7(14	2			ОТ	0015 10	7757454	(Z329363)	GRVL FILL 0010 BRWN TILL CLAY
NORTH YORK B 17 W 624033 4842550 2019-11 7215 C 7363563 A284416 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 C C 7363564 A269274 P NORTH YORK B 17 W 624034 4842551 2019-09 7215 C C C 7363564 A269274 P NORTH YORK B 17 W 624034 17 W 17 W 17 W 17 W 17 W 17 W 18 W <td< td=""><td>NUKIH YUKK B</td><td>1/W</td><td>624250</td><td>4842818</td><td>2019-12 /644</td><td>2</td><td>01 0029</td><td>///:</td><td>01</td><td>0015 10</td><td>/ 353454</td><td>A284926</td><td>51L1 0025</td></td<>	NUKIH YUKK B	1/W	624250	4842818	2019-12 /644	2	01 0029	///:	01	0015 10	/ 353454	A284926	51L1 0025
NORTH YORK B 17 W 624033 4842551 2019-117/215 Image: Constraint of the second s		17 W	624022	1812550	2010-11 721E						7262562	(C4/29/) A281/16 D	
NORTH YORK B 17 W 624034 4842551 2019-09 7215 7363564 7363564 A269274 P (Z333664)	NUKITI IUKK D	1/ //	024033	4042550	2019-11/215						/ 303303	(C45925)	
(Z333664)	NORTH YORK B	17 W	624034	4842551	2019-09 7215						7363564	A269274 P	
		1 1 11	021031	1012331	2017 077213						7303304	(Z333664)	
NORTH YORK B 17 W 624023 4842468 2020-08 7215 7367621 A295058 P	NORTH YORK B	17 W	624023	4842468	2020-08 7215						7367621	A295058 P	

											BRWN SILT CLAY FILL 0009 GREY
										(2AYD27F6	CLAY SAND DNSE 0030 GREY SAND
NORTH YORK B	17 W	624183	4842610	2020-08 6607	2	///:	MO	0045 10	7368516) A300643	SILT DNSE 0055
											BRWN SILT CLAY FILL 0009 GREY
										(AIJ2NATF)	CLAY SAND DNSE 0035 GREY SAND
NORTH YORK B	17 W	624183	4842576	2020-08 6607	2	///:	MO	0055 10	7368520	A300634	SILT DNSE 0065
											BRWN SILT CLAY FILL 0009 GREY
										(J3HC8DQ2)	CLAY SAND DNSE 0035 GREY SAND
NORTH YORK B	17 W	624113	4842608	2020-08 6607	2	///:	MO	0055 10	7368523	A300642	SILT DNSE 0065
											BRWN SILT CLAY FILL 0009 GREY
										(MCN3Y4O	CLAY SAND DNSE 0035 GREY SAND
NORTH YORK B	17 W	624058	4842638	2020-08 6607	2	///:	MO	0055 10	7368525	G) A300644	SILT DNSE 0065
											BRWN SILT CLAY FILL 0009 GREY
										(X34KOMV	CLAY SAND DNSE 0035 GREY SAND
NORTH YORK B	17 W	624162	4842563	2020-08 6607	2	///:	MO	0055 10	7368534	Y) A293743	SILT DNSE 0065
										(Z345165)	
NORTH YORK B	17 W	623880	4842606	2020-09 7241					7369723	A302569 P	
										(Z345135)	
NORTH YORK B	17 W	623927	4842614	2020-09 7241					7369724	A302638 P	
										(Z345136)	
NORTH YORK B	17 W	623859	4842584	2020-09 7241			_		7369725	A302639 P	
											BRWN SILT CLAY FILL 0009 GREY
										(R6MNFG7L	CLAY SAND DNSE 0035 GREY SAND
NORTH YORK B	17 W	624183	4842610	2020-08 6607	2	///:	MO	0055 10	7372896) A300625	SILT DNSE 0065
										(UAIKQMSY	BRWN FILL 0002 BRWN TILL SAND
NORTH YORK B	17 W	624262	4842053	2021-02 7282	2	///:	MO	0025 10	7385323) A310401	0010 GREY TILL 0035
										(SDG8V2QL	BRWN FILL 0002 BRWN TILL SAND
NORTH YORK B	17 W	624290	4842015	2021-02 7282	2	///:	MO	0045 5	7385324) A310397	0010 GREY TILL 0050
		(0.1005	101000		-					(EQS88ZG6)	BRWN FILL 0002 BRWN TILL SAND
NORTH YORK B	17 W	624287	4842021	2021-02 7282	2	///:	MO	002010	7385325	A310395	0010 GREY TILL 0030
										(0110 0	
		(0.100)	1010011		-					(OV3C4KPZ	BRWN FILL 0002 BRWN TILL SAND
NORTH YORK B	17 W	624281	4842011	2021-02 7282	2	///:	MO	0025 10	7385326) A310400	0010 GREY TILL 0030

											(73ZH4KJF)	BRWN FILL 0002 BRWN TILL SAND
NORTH YORK B	17 W	624286	4841970	2021-02 7282	2		///:	MO	0025 10	7385327	A310382	0010 GREY TILL 0030
											(S8N2H7OP	BRWN FILL 0002 BRWN TILL SAND
NORTH YORK B	17 W	624322	4842039	2021-02 7282	2		///:	MO	0025 10	7385328) A310398	0010 GREY TILL 0030
											(U7PBFWIO	BRWN SAND GRVL 0010 GREY TILL
NORTH YORK B	17 W	624330	4842003	2021-02 7282	2		///:	MO	0007 5	7385329) A310399	GRVL 0012
												GRVL SAND FILL 0005 BRWN CLAY
											(ZMLZKDER	SLTY 0015 GREY TILL HARD 0035
NORTH YORK B	17 W	624288	4842134	2021-05 7360	2		///:	MO	0035 10	7389719) A317657	GREY CLAY 0045
												BRWN SILT CLAY FILL 0009 GREY
											(RH8VICWO	CLAY SAND DNSE 0035 GREY SAND
NORTH YORK B	17 W	624153	4842602	2020-08 6607	2		///:	MO	0055 10	7368532) A300641	SILT DNSE 0065
											(Z258650)	BRWN SILT CLAY FILL 0005 BRWN
NORTH YORK B	17 W	623993	4842576	2017-02 7247	2	UT 0018		TH MO	0010 10	7297815	A202355	SILT CLAY TILL 0020
											(C32533)	
NORTH YORK B	17 W	624625	4842595	2016-03 7147						7259991	A175748 P	
											(C29035)	
NORTH YORK B	17 W	624077	4842629	2016-03 6032						7281575	A202475 P	
											(Z245481)	BLCK CMTD 0002 BRWN SAND SILT
NORTH YORK B	17 W	623664	4842218	2017-02 7241	1			TH MO	0004 10	7281833	A185472	GRVL 0014 GREY
												BRWN SAND GRVL 0003 BRWN SILT
											(Z253375)	CLAY TILL 0011 GREY SILT CLAY TILL
NORTH YORK B	17 W	623655	4842285	2017-02 7241	1.25			TH MO	0010 10	7281889	A211211	0020
												BRWN SAND GRVL 0003 BRWN SILT
											(Z253374)	CLAY TILL 0011 GREY SILT CLAY TILL
NORTH YORK B	17 W	623646	4842284	2017-02 7241	1.25			TH MO	0010 10	7281890	A185463	0020
												BRWN SAND GRVL 0003 BRWN SILT
											(Z253376)	CLAY TILL 0010 GREY SILT CLAY TILL
NORTH YORK B	17 W	623683	4842211	2017-02 7241	1.25			TH MO	0010 10	7281891	A185470	0020
												BRWN SAND GRVL 0003 BRWN SILT
											(Z251094)	SAND TILL 0010 GREY SILT CLAY
NORTH YORK B	17 W	623673	4842204	2017-02 7241	1.25			TH MO	0005 10	7281892	A217290	TILL 0015
											(C37221)	
NORTH YORK B	17 W	624034	4842586	7147						7286239	A175748 P	

											(C42102)	
NORTH YORK B	17 W	624315	4842065	2018-07 7215						7337045	A253495 P	
NORTH YORK B	17 W	624055	4842452	2020-10 7215						7389894	(C49446) P	
	4 7 111	(0.4005	4040050		0			TU NO	000040	5000010	(Z269794)	
NORTH YORK B	17 W	624285	4843052	2017-117383	Z	UK 0007		TH MO	002010	/300018	AZZ64ZZ	FILL SILT CLAY 0030
NORTH YORK B	17 W	624315	4842973	2017-11 7383	2			тн мо	0010 10	7300019	(2269795) A226467	FILL SILT CLAY 0020
	17 11	021010	1012775	2017 117505	<u> </u>				001010	7500017	(7269796)	
NORTH YORK B	17 W	624367	4842958	2017-11 7383	1			тн мо	0010 10	7300020	A238821	FILL SILT CLAY 0020
											(Z234247)	BRWN SAND 0005 BRWN SILT 0015
NORTH YORK B	17 W	624543	4842657	2017-03 7464	1.97			МО	0015 10	7301215	A208263	GREY TILL 0025
											(C39915)	
NORTH YORK B	17 W	624320	4842591	2017-09 7464						7303222	A233453 P	
											(C40474)	
NORTH YORK B	17 W	624030	4842535	2018-02 7147						7307057	A166520 P	
												BRWN FILL 0002 BRWN SILT SAND
											(Z271411)	SAND 0007 GREY SILT SAND 0009
NORTH YORK B	17 W	623994	4842607	7147	1.97	UT 0005		MO	0009 10	7322827	A247300	GREY CLAY SILT 0018
		(00000	4040005	0010 10 (000						5004045	(C40760)	
NORTH YORK B	17 W	623980	4842395	2018-10 6988						7331247	A242856 P	
											(7200220)	DLCR 0004 DRWN GRVL 0005 RDWN CLAV SLTV 0016 CDEV STNS
NORTH YORK B	17 W	624277	4842118	2019-03 7360	2	UT 0035	///.	мо	0035 10	7331387	(2309329) A266697	LOOS 0024 GREY CLAY STNS 0045
	17 00	027277	1012110	2017-037300	<u></u>	01 0035	///.	MO	003310	/33130/	A200077	
											(7309330)	BLCK 0004 GREY CLAY 0007 BLCK
NORTH YORK B	17 W	624319	4842055	2019-03 7360	2	UT 0025	///:	мо	0030 15	7331388	A266696	FILL 0025 GREY CLAY STNS 0045
							,,,,				(C37192)	
YORK BOROUGH	17 W	624349	4842074	2017-05 7464						7289081	A224776 P	
											(C38284)	
YORK BOROUGH	17 W	624030	4842535	2017-06 7147						7291951	A166520 P	